首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   17篇
安全科学   1篇
废物处理   2篇
环保管理   93篇
综合类   9篇
基础理论   6篇
评价与监测   2篇
社会与环境   2篇
灾害及防治   4篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   4篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有119条查询结果,搜索用时 531 毫秒
41.
Abstract: Soil moisture is an important hydrological variable in reforestation practices in a water‐limited region of the Loess Plateau of northwestern China. The objective of this study was to quantify the spatial dynamics of soil moisture on a complex terrain. During 2004‐2006, a total of 313 sample points in two kinds of grid (2 × 2 m and 20 × 20 m) were arranged for soil moisture measurements (two soil layers: 0‐30 and 30‐60 cm) with Time Domain Reflectometry. The geostatistical properties of soil moisture patterns, the variance and correlation structure of the soil moisture, and the effects of terrain factors on soil moisture were analyzed. The results suggested that our sampling grid captured the spatial variability of soil moisture distributions for this complex terrain. Principal Component Analysis and Cluster Analysis statistics showed that soil moisture decreased as slope gradient increased; that sunny aspects (112.5°‐292.5°) had relatively lower soil moisture than did shady aspects (292.5°‐112.5°); that soil moisture was lowest in the SWW direction and highest in the NWN direction; and that hillslope aspect was the main factor affecting soil moisture in the 0‐ to 30‐cm soil layer, whereas the main factor for the 30‐ to 60‐cm layer was slope gradient. It was found that the relative values of soil moisture for steep slopes (>36%) with shady aspect (292.5°‐112.5°), gentle slopes (<36%) with sunny aspect (112.5°‐292.5°), and steep slopes with sunny aspect were 99, 82, and 80, respectively – assuming a soil moisture value of 100 for gentle slopes with shady aspect. The results of this study are expected to be relevant to and useful for reforestation planning and design, parameterization of distributed hydrology models, and land productivity assessment in the study region.  相似文献   
42.
Kroes, Daniel E. and Cliff R. Hupp, 2010. The Effect of Channelization on Floodplain Sediment Deposition and Subsidence Along the Pocomoke River, Maryland. Journal of the American Water Resources Association (JAWRA) 46(4): 686-699. DOI: 10.1111/j.1752-1688.2010.00440.x Abstract: The nontidal Pocomoke River was intensively ditched and channelized by the mid-1900s. In response to channelization; channel incision, head-cut erosion, and spoil bank perforation have occurred in this previously nonalluvial system. Six sites were selected for study of floodplain sediment dynamics in relation to channel condition. Short- and long-term sediment deposition/subsidence rates and composition were determined. Short-term rates (four years) ranged from 0.6 to 3.6 mm/year. Long-term rates (15-100+ years) ranged from −11.9 to 1.7 mm/year. 137Cs rates (43 years) indicate rates of 0.24 to 7.4 mm/year depending on channel condition. Channelization has limited contact between streamflow and the floodplain, resulting in little or no sediment retention in channelized reaches. Along unchannelized reaches, extended contact and depth of river water on the floodplain resulted in high deposition rates. Drainage of floodplains exposed organic sediments to oxygen resulting in subsidence and releasing stored carbon. Channelization increased sediment deposition in downstream reaches relative to the presettlement system. The sediment storage function of this river has been dramatically altered by channelization. Results indicate that perforation of spoil banks along channelized reaches may help to alleviate some of these issues.  相似文献   
43.
Zink, Jason M., Gregory D. Jennings, and G. Alexander Price, 2012. Morphology Characteristics of Southern Appalachian Wilderness Streams. Journal of the American Water Resources Association (JAWRA) 48(4): 762‐773. DOI: 10.1111/j.1752‐1688.2012.00647.x Abstract: Watersheds without urbanization or impacts from logging are rare in the southern Appalachian Mountains. The Joyce Kilmer/Slickrock Wilderness of North Carolina and Tennessee contains 24 km2 of old‐growth forest, with the balance of the wilderness in a mature second‐growth forest. The watersheds of Little Santeetlah and Slickrock Creek are located within the wilderness. Morphological information, including channel dimensions and longitudinal profiles, was gathered from 14 alluvial stream reaches in these watersheds. The study sites had drainage areas from 0.25 to 41.6 km2 and stream slopes from 0.014 to 0.104 m/m. Bankfull cross‐section dimensions of the study stream reaches were strongly correlated to drainage area across the observed range of slopes and bed morphology. Cross‐section area and width relationships for the streams in this study did not differ significantly from regional curves for the mountain physiographic region of North Carolina. Observations of these reaches did not suggest a definitive rule regarding the proportion of steps and riffles in streams. Pools occupied greater than 50% of the length in all stream reaches with slopes less than 0.07 m/m. Significant correlation existed between step height ratio and slope, suggesting that step height can be approximated as the product of channel width and slope. Riffle length and riffle slope ratios were also significantly correlated with slope, though pool spacing was not.  相似文献   
44.
Abstract: An ensemble of rule‐based models was constructed to assess possible future braided river planform configurations for the Toklat River in Denali National Park and Preserve, Alaska. This approach combined an analysis of large‐scale influences on stability with several reduced‐complexity models to produce the predictions at a practical level for managers concerned about the persistence of bank erosion while acknowledging the great uncertainty in any landscape prediction. First, a model of confluence angles reproduced observed angles of a major confluence, but showed limited susceptibility to a major rearrangement of the channel planform downstream. Second, a probabilistic map of channel locations was created with a two‐parameter channel avulsion model. The predicted channel belt location was concentrated in the same area as the current channel belt. Finally, a suite of valley‐scale channel and braid plain characteristics were extracted from a light detection and ranging (LiDAR)‐derived surface. The characteristics demonstrated large‐scale stabilizing topographic influences on channel planform. The combination of independent analyses increased confidence in the conclusion that the Toklat River braided planform is a dynamically stable system due to large and persistent valley‐scale influences, and that a range of avulsive perturbations are likely to result in a relatively unchanged planform configuration in the short term.  相似文献   
45.
Watershed managers often use physical geomorphic and habitat assessments in making decisions about the biological integrity of a stream, and to reduce the cost and time for identifying stream stressors and developing mitigation strategies. Such analysis is difficult since the complex linkages between reach‐scale geomorphic and habitat conditions, and biological integrity are not fully understood. We evaluate the effectiveness of a generalized regression neural network (GRNN) to predict biological integrity using physical (i.e., geomorphic and habitat) stream‐reach assessment data. The method is first tested using geomorphic assessments to predict habitat condition for 1,292 stream reaches from the Vermont Agency of Natural Resources. The GRNN methodology outperforms linear regression (69% vs. 40% classified correctly) and improves slightly (70% correct) with additional data on channel evolution. Analysis of a subset of the reaches where physical assessments are used to predict biological integrity shows no significant linear correlation, however the GRNN predicted 48% of the fish health data and 23% of macroinvertebrate health. Although the GRNN is superior to linear regression, these results show linking physical and biological health remains challenging. Reasons for lack of agreement, including spatial and temporal scale differences, are discussed. We show the GRNN to be a data‐driven tool that can assist watershed managers with large quantities of complex, nonlinear data.  相似文献   
46.
Despite the importance of riparian buffers in providing aquatic functions to forested streams, few studies have sought to capture key differences in ecological and geomorphic processes between buffered sites and forested conditions. This study examines post‐harvest buffer conditions from 20 randomly selected harvest sites within a managed tree farm in the Cascade Mountains of western Washington. Post‐harvest wind derived treefall rates in buffers up to three years post‐harvest averaged 268 trees/km/year, 26 times greater than competition‐induced mortality rate estimates. Treefall rates and stem breakage were strongly tied to tree species and relatively unaffected by stream direction. Observed treefall direction is strongly biased toward the channel, irrespective of channel or buffer orientation. Fall direction bias can deliver significantly more wood recruitment relative to randomly directed treefall, suggesting that models that utilize the random fall assumption will significantly underpredict recruitment. A simple estimate of post‐harvest wood recruitment from buffers can be obtained from species specific treefall and breakage rates, combined with bias corrected recruitment probability as a function of source distance from the channel. Post‐harvest wind effects may reduce the standing density of trees enough to significantly reduce or eliminate competition mortality and thus indirectly alter bank erosion rates, resulting in substantially different wood recruitment dynamics from buffers as compared to unmanaged forests.  相似文献   
47.
He, Laien and Gregory V. Wilkerson, 2011. Improved Bankfull Channel Geometry Prediction Using Two‐Year Return‐Period Discharge. Journal of the American Water Resources Association (JAWRA) 47(6):1298–1316. DOI: 10.1111/j.1752‐1688.2011.00567.x Abstract:  Bankfull discharge (Qbf) and bankfull channel geometry (i.e., width, Wbf; mean depth, Dbf; and cross‐section area, Abf) are important design parameters in stream restoration, habitat creation, mined land reclamation, and related projects. The selection of values for these parameters is facilitated by regional curves (regression models in which Qbf, Wbf, Dbf, and Abf are predicted as a function of drainage area, Ada). This paper explores the potential for the two‐year return‐period discharge (Q2) to improve predictions of Wbf, Dbf, and Abf. Improved predictions are expected because Q2 estimates integrate the effects of basin drainage area, climate, and geology. For conducting this study, 29 datasets (each representing one hydrologic region) spanning 14 states in the United States were analyzed. We assessed the utility of using Q2 by comparing statistical measures of regression model performance (e.g., coefficient of determination and Akaike’s information criterion). Compared to using Ada, Q2 is shown to be a “clearly superior” predictor of Wbf, Dbf, and Abf, respectively, for 21, 13, and 25% of the datasets. By contrast, Ada yielded a clearly superior model for predicting Wbf, Dbf, and Abf, respectively, for 0, 0, and 14% of the datasets. Our conclusion is that it alongside with developing conventional regional curves using Ada it is prudent to develop regional curves that use Q2 as an independent variable because in some cases the resulting model will be superior.  相似文献   
48.
Abstract: To evaluate anthropogenic sedimentation in United States (U.S.) Pacific Northwest coastal streams, we applied an index of relative bed stability (LRBS*) to summer low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program field methods in a probability sample of 101 wadeable stream reaches. LRBS* is the log of the ratio of bed surface geometric mean particle diameter (Dgm) to critical diameter (D*cbf) at bankfull flow, based on a modified Shield’s criterion for incipient motion. We used a formulation of LRBS* that explicitly accounts for reductions in bed shear stress that result from channel form roughness due to pools and wood. LRBS* ranged from ?1.9 to +0.5 in streams within the lower quartile of human riparian and basin disturbance, and was substantially lower (?4.2 to ?1.1) in streams within the upper quartile of human disturbance. Modeling results suggest that the expected range of LRBS* in streams without human disturbances in this region might be generally between ?0.7 and +0.5 in either sedimentary or volcanic lithology. However, streams draining relatively soft, erodible sedimentary lithology showed greater reductions in LRBS* associated with disturbance than did those having harder, more resistant volcanic (basalt) lithology with similar levels of basin and riparian disturbance. At any given level of disturbance, smaller streams had lower LRBS* than those with larger drainages. In sedimentary lithology (sandstone and siltstone), high‐gradient streams had higher LRBS* than did low‐gradient streams of the same size and level of human disturbance. High gradient streams in volcanic lithology, in contrast, had lower LRBS* than low‐gradient streams of similar size and disturbance. Correlations between Dgm and land disturbance were stronger than those observed between D*cbf and land disturbance. This pattern suggests that land use has augmented sediment supplies and increased streambed fine sediments in the most disturbed streams. However, we also show evidence that some of the apparent reductions in LRBS*, particularly in steep streams draining small volcanic drainages, may have resulted in part from anthropogenic increases in bed shear stress. The synoptic survey methods and designs we use appear adequate to evaluate regional patterns in bed stability and sedimentation and their general relationship to human disturbances. More precise field measurements of channel slope, cross‐section geometry, and bed surface particle size would be required to use LRBS* in applications requiring a higher degree of accuracy and precision, such as site‐specific assessments at individual streams.  相似文献   
49.
ABSTRACT: The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.  相似文献   
50.
ABSTRACT: Historical inventories of sand bar number and area are sufficient to detect large-scale differences in geomorphic adjustment among regulated rivers that flow through canyons with abundant debris fans. In these canyons, bedrock and large boulders create constrictions and expansions, and alluvial bars occur in associated eddies at predictable sites. Although these bars may fluctuate considerably in size, the locations of these bars rarely change, and their characteristics can be compared through time and among rivers. The area of sand bars exposed at low discharge in Hells Canyon has decreased 50 percent since dam closure, and most of the erosion occurred in the first nine years after dam closure. The number and size of sand bars in Grand Canyon downstream from Glen Canyon Dam have decreased much less; the number of sand bars decreased by 40 percent in some 8.3-km reaches, but by less than 20 percent elsewhere. These differences are in part related to the fact that flood regulation is much greater in Grand Canyon than in Hells Canyon, and that downstream tributaries resupply sediment to Grand Canyon but not to most of Hells Canyon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号