首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2186篇
  免费   313篇
  国内免费   985篇
安全科学   208篇
废物处理   55篇
环保管理   187篇
综合类   1875篇
基础理论   658篇
污染及防治   189篇
评价与监测   239篇
社会与环境   39篇
灾害及防治   34篇
  2024年   19篇
  2023年   71篇
  2022年   87篇
  2021年   117篇
  2020年   122篇
  2019年   145篇
  2018年   87篇
  2017年   114篇
  2016年   148篇
  2015年   162篇
  2014年   244篇
  2013年   170篇
  2012年   226篇
  2011年   227篇
  2010年   176篇
  2009年   212篇
  2008年   154篇
  2007年   164篇
  2006年   149篇
  2005年   100篇
  2004年   72篇
  2003年   67篇
  2002年   43篇
  2001年   57篇
  2000年   37篇
  1999年   42篇
  1998年   29篇
  1997年   37篇
  1996年   41篇
  1995年   19篇
  1994年   32篇
  1993年   44篇
  1992年   15篇
  1991年   22篇
  1990年   10篇
  1989年   16篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
排序方式: 共有3484条查询结果,搜索用时 15 毫秒
41.
为探讨城市建筑物对其周围土壤中多环芳烃(PAHs)含量与分布的影响,对建筑物勒脚或散水边缘(B)和距建筑物5m(B-5)处20个表层土壤样品中16种优控PAHs进行了检测分析.结果表明,B处土壤中∑16PAHs含量为824~8960ng/g,平均为2649ng/g;B-5处土壤中∑16PAHs含量为637~1706ng/g,平均为1297ng/g,B处PAHs含量远高于B-5.各样点主要以4环和5环PAHs为主,B处3环PAHs含量高于B-5处.其中∑4PAHs(Fl、Pyr、InP和BghiP)含量分别占B和B-5土壤中∑16PAHs的48%和45%.参照Maliszewska-Kordybach建立的土壤PAHs污染标准,HJ-5、AJ、AJ-5、EB-5和TC-5属于中等污染程度(600~1000ng/g),其余各样点均属于重度污染(1000ng/g).B处土壤中TOC相对B-5处有富集趋势,B和B-5处土壤中PAHs与TOC无明显的相关性.BaA、Chry、B(b/k)F、BaP、InP和DahA是B和B-5处土壤中TEQBaP浓度的主要贡献者.溯源结果表明B和B-5处土壤中PAHs主要来源于煤炭、汽油和柴油的燃烧;B-5土壤中PAHs部分可能来源于石油类的泄漏.  相似文献   
42.
四溴双酚A在污水脱氮除磷过程中迁移转化试验研究   总被引:1,自引:0,他引:1  
四溴双酚A(TBBPA)是一种使用广泛的阻燃剂,其扩散到环境介质中,会对生态和人体健康构成威胁,以往研究较少关注TBBPA在脱氮除磷工艺中的迁移转化.采用实验室SBR脱氮除磷反应器,研究了TBBPA在工艺长期运行过程中的去除、在典型周期过程中的变化、在硝化和反硝化过程中的去除.TBBPA在工艺长期运行过程中的去除率为48.4%,其中生物去除率为44.4%,吸附去除率为4.0%.在典型周期中TBBPA浓度受pH影响很大.TBBPA在硝化过程的去除主要是生物作用,而在反硝化过程的去除主要是吸附作用.  相似文献   
43.
随着科技的不断创新,水工环地质勘查技术也在不断的被创新。在各种高新技术与设备被不断的应用到水工环地质勘查中后,水工环地质勘查的质量与效率也得到了更为有效的提升。本文主要对水工环地质勘查的现状进行了简要的分析,并阐述了水工环地质勘查的重要性,最后论述了水工环地质勘查技术的应用方法。  相似文献   
44.
空气污染是一个全球性的问题,并且具有深远的环境影响。暴露于空气污染会对人体健康产生许多不同的影响,理解空气污染的健康效应又是一个复杂命题,既要考虑不同类型的污染物同时也要考虑相关疾病的复杂性。然而越来越多的研究表明,表观遗传学在空气污染相关疾病的发生、发展中发挥着重要的作用。空气污染物可引起DNA甲基化、组蛋白修饰和miRNA表达等表观遗传学改变,这种改变往往发生在疾病产生的早期,因此相关研究不仅可以了解疾病的发病机制,而且还为疾病早期诊断和预防筛选可能的标志物。本文综述了表观遗传学的几种修饰方式和空气污染物造成不良健康损伤机制的一些研究进展。  相似文献   
45.
济南市表层土壤中PAHs的分布、来源及风险分析   总被引:7,自引:0,他引:7  
以山东省济南市为研究区域,采集测定了35个表层土壤样品中16种优先控制PAHs的含量,在此基础上对其组成特征、来源和环境风险进行了分析.结果表明,16种PAHs在所有样品中均具有较高的检出率,部分达到100%.含量范围为55.8—1.24×104μg·kg-1,平均值1.27×103μg·kg-1,中位值263μg·kg-1,低于已报道的我国其他地区表层土壤PAHs的污染水平.各功能区含量高低顺序为工业区、交通繁忙区、商业居民区和农田.PAHs组成分析与因子分析表明,济南市表层土壤中PAHs为混合源,煤、石油等化石燃料不完全燃烧作用占优势.16种PAHs的Bap总毒性当量浓度(TEQBa p)在0.54—1.37×103μg·kg-1之间,7种致癌性PAHs的TEQBap占总TEQBap的98.9%,是环境风险的主要贡献者.农田土壤风险水平较低,工业区土壤风险水平较高,需要管理部门特别注意.  相似文献   
46.
长江重庆段表层水体中多环芳烃的分布及来源分析   总被引:5,自引:0,他引:5  
采集了长江重庆段干流以及重要支流共7个断面的表层水样,采用液相色谱法分析15种优先控制的多环芳烃(PAHs).结果表明,水体中总PAHs浓度范围为6.44—109.39 ng·L-1,平均值为41.83 ng·L-1.在5个断面水体中检出苯并(a)芘,浓度为0.05—1.32 ng·L-1,低于我国地表水标准限值(2.8 ng·L-1).长江重庆段的PAHs浓度水平低于大部分国内其他河流,与国外一些河流的浓度水平相当.PAHs组成以中低环PAHs(3环和4环)为主,平均比例分别为55.7%和38.8%,高环PAHs(5环和6环)含量较低,分别占3.6%和1.9%.示踪PAHs比值法结果显示长江重庆段表层水体PAHs主要来源于石化产品的泄漏污染.  相似文献   
47.
化石燃料燃烧和生物质燃烧是污染物多环芳烃(polycyclic aromatic hydrocarbon,PAHs)的两大来源.放射性碳(14C)分析近年用于评估这两类源对环境中PAHs的相对贡献.此方法基于化石燃料和生物质的14C含量差异,即化石燃料不含14C,而生物质的14C浓度有一个较稳定值.14C的自然丰度极低(约10-12),因此检测PAHs这样的痕量污染物的14C含量一度极具挑战.1990年代中期,加速器质谱的技术突破使得对环境样品PAHs的14C分析具有实用价值.要准确测出PAHs的14C含量,须先从化学成分复杂的环境样品中分离出高纯度的PAHs.制备气相色谱因其出色的分离能力而成为目前环境样品PAHs14C分析必备的工具.本文意在简介基于14C分析的PAHs源解析的基本原理、技术进展,以及评估该方法获得的PAHs源解析结果的准确性.  相似文献   
48.
采用GC-MS测定了典型综合印染废水处理厂废水和污泥中芳香烃化合物的含量.结果表明,原水中苯系物总量为203.96±15.18μg·L-1,其中二甲苯占62.7%,尾水中苯系物总量为0.2±0.029μg·L-1,整个处理工艺对苯系物的去除效率为99%.原水中多环芳烃(PAHs)总浓度达1349.51±35.77 ng·L-1,以3—6环为主,主要富集在颗粒物上.整个工艺对PAHs的去除效率为95%,尾水中PAHs总浓度为65.81±20.99ng·L-1,以2—3环为主.干污泥中PAHs含量高达2996.10±151.0 ng·g-1,污泥吸附为水相中PAHs去除的主要机理之一.印染污泥直接填埋或农用会引起潜在的生态危害.  相似文献   
49.
探讨多环芳烃在胎盘中的分布,并对其进行源解析。从2012年6月—2013年6月在云南省第一人民医院产科分娩的产妇中随机抽取30例,利用气相色谱-质谱联用仪(GC-MS)检测其胎盘中多环芳烃的含量;比较胎盘的中央部分和边缘部分多环芳烃含量的差异;对多环芳烃进行源解析,探讨其主要来源。胎盘中检测到多种多环芳烃成分;其中2~4个苯环的多环芳烃占总量的90%以上,尤其是萘、苊、芴、菲、蒽、芘、荧蒽的含量较高;萘、苊烯、苊、茚并(1,2,3-c,d)芘、二苯并(a,h)蒽5种多环芳烃在胎盘中央的含量高于边缘,具有显著性差异(P0.05),其他多环芳烃在胎盘中央和边缘的含量无显著性差异(P0.05)。多环芳烃源解析提示80%研究对象体内的多环芳烃主要来自石油产品的燃烧或暴露于石油产品。  相似文献   
50.
初次对江汉平原四湖流域上区地下水中多环芳烃(PAHs)的分布特征和来源进行研究,选择湖北潜江长湖-汉江一带9个典型地下水采样点分枯水期和丰水期进行采样,并利用气相色谱与质谱联用仪对16种优控PAHs进行定量分析.结果表明,研究区枯水期和丰水期地下水中PAHs的浓度变化范围分别为62.74~224.63 ng·L-1和55.86~115.15 ng·L-1,总体水平表现出枯水期高于丰水期,且分布于滨湖区域和近岸带的地下水中PAHs浓度较高.这些PAHs输入途径比较复杂,经用主成分分析法分析其来源,大致可归结为燃烧源,部分采样点有石油或石油燃烧的污染.研究区域地下水中PAHs浓度与国内某些地区相比,显示出较低的污染水平,但就致癌性PAHs来看,枯水期具有致癌性PAHs的浓度范围在19.32~153.39 ng·L-1之间,丰水期在16.30~64.22 ng·L-1之间,均已远远超出地下水中PAHs所允许的致癌浓度范围,这必然会对当地人类身体健康构成威胁.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号