首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   14篇
  国内免费   33篇
安全科学   2篇
环保管理   2篇
综合类   85篇
基础理论   22篇
污染及防治   3篇
评价与监测   8篇
灾害及防治   1篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   12篇
  2005年   9篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有123条查询结果,搜索用时 33 毫秒
51.
对2017年9月至2018年8月、12月采集的乌鲁木齐市PM2.5、“沙雪”样品和克拉玛依土样的水溶性离子进行分析,并结合城市主要风向、扫描电镜联能谱(SEM/EDS)和后向轨迹模型(HYSPLIT),对环境中盐尘粒子的来源及其对大气颗粒物形成的影响进行了研究.结果表明:PM2.5中总水溶性离子平均浓度为(62.65±64.75)μg/m3,变化范围为0.69~328.60 μg/m3.其中SO42、Ca2+、Na+、Cl-、K+和Mg2+ 6种盐尘粒子浓度分别为(22.73±26.45),(2.11±3.11),(1.85±1.43),(0.40±0.40),(0.28±0.20),(0.21±0.15)μg/m3.四季风向结合HYSPLIT模型结果可知,PM2.5中盐尘粒子主要来源于艾比湖及玛纳斯盐湖的气团;受风沙影响,乌鲁木齐市雪样中Cl-、SO42-、Ca2+、K+、Mg2+和Na+分别增加了30,19,20,5,7和5倍.  相似文献   
52.
对广州地区春季(2015年3~4月)、夏季(2015年6~7月)、秋季(2015年9~10月)、冬季(2015年12月~2016年1月)四个季节6个粒径段(<0.49、0.49~0.95、0.95~1.5、1.5~3.0、3.0~7.2以及7.2~10.0μm)的大气颗粒物样品中水溶性有机碳(WSOC)的浓度和光学性质等变化特征进行了研究.结果表明,WSOC的浓度水平呈现冬季[(5.07±2.80)μg/m3]>秋季[(3.87±1.51)μg/m3]>春季[(3.60±1.16)μg/m3]>夏季[(2.42±0.51)μg/m3]的季节变化特征;WSOC的质量平均直径(MMD)为0.57μm (春)、0.42μm (夏)、0.49μm (秋)和0.56μm (冬).WSOC的质量吸收效率MAE365差异较大,分布在0.18~1.42m2/g之间,冬季最高;吸收波长指数AAE值分布在3.6~9.8之间.细颗粒物(<3μm)中WSOC对PM10WSOC总吸光的贡献达到了90%以上,其中<0.49μm颗粒物的贡献超过50%.在300~500nm之间,春季、夏季、秋季和冬季WSOC对颗粒物总吸光比例平均值分别为5.23%、2.95%、3.04%和6.92%;其中<0.49μm粒径段的贡献最高,分别为3.11%、1.79%、1.65%和3.45%.进一步通过特征紫外吸光度SUVA值的分析表明芳香性和分子量可能是影响WSOC吸光能力的重要因素.粒径越小颗粒物含有越多的不饱和键,使得MAE365值较高.  相似文献   
53.
在广州市中心城区,分别选取离地50m左右的楼顶采样点和交通干线路边采样点,在空气污染水平相对较严重的秋季,以大流量采样器同步采集了PM_(10)和PM_(2.5)样品,研究其水溶性无机离子组成特征.  相似文献   
54.
环境中多溴联苯醚分析方法的研究进展   总被引:1,自引:0,他引:1  
多溴联苯醚(PBDEs)是一类性能优异的阻燃剂,被广泛添加到工业产品和日常生活用品中.研究表明很多PBDEs单体具有持久性有机污染物(POPs)的特性,其中五溴和八溴联苯醚已被列入POPs清单.它们在环境中广泛存在,对环境和生态系统带来健康风险.本文概述了环境中PBDEs的前处理方法和仪器分析的研究进展,对不同的方法进行了综述和比较,并提出了PBDEs分析方法研究的发展趋势.  相似文献   
55.
为了获得机动车排放源中乙醛的δ13C(稳定碳同位素丰度)特征及其影响因素,进行不同负荷下的发动机台架试验,采集不同怠速下的机动车尾气样品. 利用气相色谱-燃烧-同位素比值质谱(GC-C-IRMS)分析乙醛δ13C值,并与ρ(乙醛)进行分析. 结果显示:①在发动机燃烧过程中,乙醛的生成和消除反应同时存在. 在发动机低负荷运行时,乙醛的δ13C分馏值为负(-1.4‰~-0.4‰),表明生成反应占主导;而在高负荷运行时,分馏值为正(0.5‰~1.3‰),表明消除反应占主导. ②乙醛的δ13C值与其质量浓度无明显相关性,主要受发动机燃烧温度和尾气净化装置的影响. 整车尾气中乙醛的δ13C值在-29.1‰~-24.4‰之间,平均值为-26.5‰±1.6‰. 其中,汽油车为-25.9‰~-24.4‰,平均值为-24.9‰±0.5‰;柴油车为-29.1‰~-27.0‰,平均值为-28.0‰±0.6‰. ③南方机动车尾气排放源与植物排放源中的乙醛的δ13C值范围不同,表明δ13C值可用于大气乙醛的源解析. 通过机动车尾气中c(乙醛)/c(CO2)估算广州汽油车和轻型柴油车乙醛的排放因子,二者分别为(13±16)和(169±106)mg/L.   相似文献   
56.
广州市饮用水中挥发性有机物的研究   总被引:1,自引:0,他引:1  
饮用水中的挥发性有机化合物(VOCs)来源于水源水受到的环境污染或是在净化消毒工艺处理工程中反应产生的副产物,可对人体健康造成极大的危害。改革开放以来,广州人口和经济得到突飞猛进的发展,也带来了包括饮用水安全在内的诸多严重的社会和环境问题。虽然饮用水中VOCs的研究已经得到越来越多的重视,但是目前对广州市饮用水中挥发性有机物的研究还鲜有报道。本文在广州市中心城区选取15个不同位置的采样点进行了自来水水样采集,并利用吹扫-捕集-气相色谱-质谱(GC-MS)联用系统分析技术测定水中 VOCs 的种类和三卤甲烷的质量浓度。结果表明,广州市中心城区的自来水中VOCs有20种,以三卤甲烷(THMs)和芳香烃类为主,占了所检出的物质总量的78%以上。THMs中四种化合物(氯仿、一溴二氯甲烷、二溴一氯甲烷、溴仿)的检出率达100%,总三卤甲烷的平均质量浓度为46.46μg· L-1,最大值为53.31μg· L-1,最小值39.91μg· L-1。根据2006版国家饮用水标准,四种三卤甲烷质量浓度均低于标准限值,符合标准要求。对市面上一般的瓶装水的研究发现,瓶装水中三卤甲烷的质量浓度非常低,总三卤甲烷平均质量浓度仅为1.47μg·L-1,约是自来水中质量浓度的1/30。为了解温度及煮沸对自来水中 THMs 质量浓度的影响,本研究设计了实验进行探究。结果发现加热至沸腾过程中,THMs质量浓度随温度升高而升高,而沸腾后THMs骤降,煮沸5 min可降低水中约95%的THMs,接近瓶装水中THMs质量浓度。  相似文献   
57.
广州城区夏季大气颗粒物数浓度谱分布特征   总被引:7,自引:1,他引:6       下载免费PDF全文
于2013年6月2日—7月15日,利用扫描迁移性粒谱仪(SMPS)对广州城区大气17~800 nm的粒子谱进行了连续观测,同时结合在线小时ρ(PM2.5)及气象数据,对颗粒物污染特征进行了分析. 结果表明:观测期间,凝结核模态粒子、爱根核模态粒子、积聚模态粒子的数浓度范围分别为68~7 687、1 009~47 724、238~14 781 cm-3.平均数浓度谱及体积谱均呈单峰分布,峰值分别出现在50和300 nm左右. 根据双模态对数正态分布模型对平均数浓度谱拟合的结果可知,爱根核模态粒子和积聚核模态粒子的几何平均粒径分别为48和144 nm. 颗粒物数浓度及其谱分布日变化特征明显,在交通高峰及太阳辐射较强的时间段均出现峰值. 在观测阶段,粒子增长现象频繁发生,推测大气光化学反应引起的气-粒转化是广州城区夏季大气颗粒物的重要来源. 7月12—13日广州城区发生了一次典型的大气污染过程,ρ(PM2.5)由18 μg/m3增至112 μg/m3,能见度降至8 km. 在该时间段,积聚模态粒子体积分数与ρ(PM2.5)变化一致,R2(相关系数)达到了0.85. 后向轨迹分析表明,污染气团主要来自于西南方向,在陆地停留时间较长.   相似文献   
58.
于2017年3月—2018年5月在广州市南沙港区选取不同吨位的5艘船舶进行登船实测,建立了基于燃油消耗的排放因子.结果表明,船舶辅机CO2排放因子为(3085±439)~(3195±121) g·kg-1,CO排放因子为(5.50±1.33)~(26.10±8.90) g·kg-1,TVOC排放因子为(0.29±0.02)~(1.68±0.06) g·kg-1,PM2.5排放因子为(0.56±0.09)~(12.50±3.11) g·kg-1,NOx排放因子为(19.20±4.12)~(83.30±11.80) g·kg-1,基于燃油消耗量,估算2017年广州港船舶停泊工况辅助发动机SO2、CO、TVOC、PM2.5和NOx排放总量分别为736、(794±209)、(46.40±2.39)、(223.0±49.4)和(3237±698) t.船舶引擎功率对排放CO、TVOC和PM2.5影响显著,引擎功率较低的船舶以上3种大气污染物排放因子更高.从吨位而言,≥10000总吨的船舶对SO2、CO、TVOC和NOx 4种大气污染物的排放分担率均超过50%,≤2999总吨的船舶则对PM2.5的排放分担率最高.从船舶类型而言,分担率最高的是集装箱船,分别占SO2、CO、TVOC、PM2.5和NOx排放总量的43.8%、30.8%、41.4%、16.3%和40.9%,此外,散货船、其他货船、顶推拖船和油船对排放量的分担率也较高,以上5种船舶占到了各类大气污染物排放总量的90%.  相似文献   
59.
广州地区秋冬季细颗粒物PM_(2.5)化学组分分析   总被引:1,自引:0,他引:1  
本文对广州地区2009~2010年秋冬季节大气中PM2.5进行采样,并分析PM2.5样品的水溶性离子、重金属元素、有机碳/元素碳(OC/EC)、有机酸、多环芳烃浓度和粒径分布。通过分析初步掌握了广州地区秋冬季节大气中PM2.5的化学组分和特点:广州地区秋冬季PM2.5呈现城区高于城郊,PM2.5中有机质(OM)是最主要的成分,其次是硫酸根离子、硝酸根离子和铵根;PM2.5中有机碳和元素碳的空间分布特征相似,并受一次源排放影响;PM2.5中铝、锌、铅是含量最高的重金属,且城区重金属浓度高于城郊;PM2.5中17种多环芳烃、苯并a芘(BaP)均为城郊浓度最高。  相似文献   
60.
孙琳婷  赵祯  唐建辉 《环境科学》2020,41(9):4069-4075
采用超高效液相色谱/质谱联用(UPLC/MS-MS)分析了我国重要的氟化物工业园区周边河流——辽宁细河(阜新段)、山东小清河(淄博段)和长江(江苏常熟段)表层沉积物中全(多)氟烷基化合物(PFASs)的污染状况.细河表层沉积物中,PFASs含量范围(以干重计,下同)为15.8~2 770 ng·g~(-1),全氟丁烷磺酸(PFBS)和六氟环氧丙烷二聚酸(HFPO-DA)是主要污染物;小清河表层沉积物中,PFASs含量为12.2~7 853 ng·g~(-1),全氟烷基辛酸(PFOA)和HFPO-DA为主要污染物;长江表层沉积物中,PFASs含量为9.20~35.9 ng·g~(-1),全氟十四酸(PFTeDA)和6∶2氟调磺酸(6∶2FTS)为主要污染物.工业园区废水排放(点源污染)是本研究中3个区域PFASs的主要来源. 3个区域PFASs含量及组成差异明显,与工业园区生产规模和产业类型有关.PFASs含量及各组分含量与TOC、沉积物粒径没有显著相关性,PFASs各组分间相关性也有差异,说明PFASs在沉积物中的富集过程与多种因素有关.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号