首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   45篇
安全科学   1篇
废物处理   1篇
综合类   53篇
基础理论   9篇
污染及防治   3篇
评价与监测   5篇
  2024年   3篇
  2023年   9篇
  2022年   11篇
  2021年   12篇
  2020年   14篇
  2019年   4篇
  2018年   4篇
  2015年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  1998年   1篇
  1992年   2篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
51.
基于三维荧光光谱(EEMs)技术结合平行因子分析法(PARAFAC)以及紫外-可见光谱技术(UV-vis),对雄安新区-白洋淀冬季冰封期不同特征区域间隙水溶解性有机物(DOM)的光谱特征以及来源进行解析.结果表明:冬季冰封期白洋淀不同特征淀区间隙水DOM的相对浓度差异显著,养殖区的最高、旅游区的最低;冰封期白洋淀大部分区域间隙水DOM的E3/E4均大于3.5,说明DOM以低腐殖质成分为主;三维荧光通过PARAFAC解析出3种组分,分别为类酪氨酸(C1)、类色氨酸(C2)和陆源腐殖质(C3);对3个组分进行相关性分析,结果显示C1与C2之间的相关系数达到0.99(p<0.001);白洋淀各个特征区域间的DOM总荧光强度和各荧光组分相对丰度呈现显著的差异(p<0.05);DOM的总荧光强度以及各组分的荧光强度均呈现出唐河入淀口高的特征,C1+C2是DOM的主要成分呈现养殖区多、自然区少的特点,养殖区达到79.30%~92.04%,自然区达到26.60%~38.55%;冰封期白洋淀间隙水水体的DOM荧光指数FI为(2.58±0.23)>1.8,生物源指数(BIX)为1.20±0.25,表明白洋淀DOM来源于生物活动并且以自生源为主,与腐殖程度指标(HIX)的结果相吻合;a254与硝氮、溶解性总磷和A254/A204,a355S350~400;a440S275~295S350~400E2/E4E2/E6E4/E6,C1以及C2与Fn280,C3与硝氮和Fn355相关性很好(p<0.05).综上,通过对冬季冰封期白洋淀各个典型淀区间隙水水体DOM光谱特征进行研究,可以为分析白洋淀水体有机物污染特征和白洋淀的水质管理提供技术支持.  相似文献   
52.
使用紫外-可见光谱(UV-vis)和三维荧光光谱-平行因子分析法(EEM-PARAFAC),分析了白洋淀2019年春季、夏季和秋季沉积物间隙水中溶解性有机物(DOM)的来源及分布特征.结果表明,白洋淀夏季沉积物间隙水DOM的相对浓度显著高于春秋季;E2/E3值显示夏季的间隙水DOM分子量要高于春秋季.使用EEM-PARAFAC从间隙水中提取了3种类蛋白组分(C1、C2、C3)和2种类腐殖质组分(C4、C5);类蛋白是DOM的主要构成组分,占比达到(63.56±16.07)%.DOM总荧光强度、各组分荧光强度及其相对丰度季节差异不显著,空间差异显著;养殖区的类蛋白物质占主体,自然区的类腐殖质物质占主体.沉积物间隙水的高BIX、FI、βα以及低HIX,表明沉积物间隙水DOM具有低腐殖化,强自生源特征.与此同时,环境因子与荧光组分的回归分析可以为管理者预测沉积物间隙水水质提供支持.  相似文献   
53.
底栖动物对维持和稳定湖泊生态系统结构与功能具有重要作用.为了探明长期强人为干扰条件下底栖动物群落结构特征及其主要环境影响因子,本研究分别于2009年和2018年的4月和8月采集和分析了白洋淀8个区水体、沉积物和底栖动物样品.根据人为干扰程度的不同,将白洋淀分为重度干扰区(HD)、中度干扰区(MD)和轻度干扰区(LD),同时分析了3类生境的理化参数和底栖动物群落结构与多样性指数.研究结果表明:1就水体和沉积物理化参数而言,总磷(TP)、总氮(TN)、氨氮(NH4+)、硝酸盐(NO3-)、磷酸盐(PO43-)和沉积物总氮(TNs)、总磷(TPs)等理化参数在重度干扰区呈最高值;2就底栖动物群落组成而言,在重度干扰区底栖动物群落物种丰度、生物量、密度均最低,且优势种大多以水生昆虫为主;3就底栖动物群落多样性指数而言,2009年,白洋淀底栖动物群落Margalef丰富度指数D值(0.84)和Shannon-Wiener多样性指数H''值(1.13)均在中度干扰区最高,而Pielou均匀度指数J值(0.53)在轻度干扰区最高,这些指数均与沉积物总氮(TNs)呈显著负相关;2018年,D值(2.02)和H''值(2.21)在轻度干扰区中最高,而J值(0.84)在重度干扰区中最高,D值和H''值与水深(Water depth,WD)呈正相关关系,而与硝酸盐(NO3-)和总磷(TP)等呈负相关关系;4RDA分析结果表明,白洋淀底栖动物群落组成的主要环境影响因子在2009年为WD和pH,而在2018年为沉积物中总磷(TPs).2009-2018年,白洋淀底栖动物群落(主要影响因子从WD和pH变为沉积物总磷)和多样性指数(主要影响因子从TNs变为WD、TN、TP、NO3-、TNs等)的主要环境影响因子发生了显著变化.因此,针对主要环境影响因子的时间变化,在不同时期底栖动物群落的恢复需采取不同措施,本研究结果可为白洋淀生态修复提供理论和数据基础.  相似文献   
54.
随着社会经济的发展,大量含有抗生素的废水未经有效处理排放到水环境中,加剧了城市水环境中抗生素的污染.本研究以石家庄市地表水和地下水为研究对象,采用超高效液相色谱串联质谱法(HPLC-MS)分析了石家庄水环境中喹诺酮类(Quinolones,QNs)抗生素的空间分布特征,并采用风险熵值法(RQ)评估了石家庄市水环境中QNs的生态风险和健康风险.结果表明:1在石家庄市河流和水库中,QNs抗生素的浓度分别为98.43~4398.00 ng·L-1和9.99~49.24 ng·L-1,恩诺沙星(Enrofloxacin,ENR)和依诺沙星(Enoxacin,ENO)分别是河流和水库中主要的QNs抗生素;2在石家庄市地下水中,QNs抗生素的浓度为3.45~15.41 ng·L-1;3相关分析结果表明,在地表水中氧氟沙星(Ofloxacin,OFL)、诺氟沙星(Norfloxacin,NOR)、恩诺沙星(Enrofloxacin,ENR)、双氟沙星(Difloxacin,DIF)、沙氟沙星(Sarafloxacin,SAR)、恶喹酸(Oxolinic Acid,OXO)和氟甲喹(Flumequine,FLU)与温度(T)和总溶解性固体颗粒物(TDS)呈显著相关(p<0.01),而ENO与pH显著相关(p<0.01);在地下水中吡哌酸(Pipemidic Acid,PIP)和马波沙星(Marbofloxacin,MAR)与T显著相关;4地表水中QNs与地下水中QNs的相关性不显著,表明石家庄市地下水中QNs的主要来源不是地表水;5生态风险结果表明,石家庄市地表水中QNs总体处于高风险水平,而地下水QNs整体处于中低风险水平;6人体健康风险结果表明,石家庄市水环境中QNs抗生素的健康风险较低.总体来说,石家庄市水环境中QNs污染在地表水中更为严峻,而石家庄地表水中QNs浓度最高的区域为汪洋沟.  相似文献   
55.
利用超高效液相色谱串联质谱法(HPLC-MS)对白洋淀水体和水生植物中喹诺酮类(Quinolones,QNs)抗生素进行检测,并探究QNs在水生植物的生物富集特征及其与环境因子的相关性.研究结果表明:①在水生植物中,氧氟沙星(Ofloxacin,OFL)和氟甲喹(Flumequine,FLU)的检出率最高(Freq=100%),其次为马波沙星(Ciprofloxacin,CIP)和氟罗沙星(Fleroxacin,FLE)(Freq≥50%),其余QNs检出率小于40%(Freq≤40%);水生植物中∑QNs浓度为34.6~290.9 ng·g-1,其中FLU和OFL平均浓度最高;②在白洋淀水体中,∑QNs浓度为0.738~2004.000 ng·L-1,其中FLU平均浓度最高(168.0 ng·L-1);③QNs在水生植物中的生物富集系数(Bioconcentration factors,BCF)(L·kg-1)为170.1(BCFORB)~2 836.0 L·kg-1(BCFFLU),这表明QNs在水生植物中的生物富集能力较高;④检出率较高的FLU、OFL、FLE的营养放大因子(Trophic magnification factors,TMF)为0.712(TMFQNs)~3.646(TMFFLE),其中OFL呈营养放大,而FLU、FLE呈营养稀释;⑤相关性分析结果表明ENR、MAR、OFL和ORB的BCF与水深(WD)、温度(T)、透明度(SD)、溶解氧(DO)和沉积物总有机碳(TOCs)呈显著正相关;而与化学需氧量(COD)、总磷(TP)、总氮(TN)、NO3-N、PO43-、沉积物总碳(TCs)、沉积物总氮(TNs)和NH3-Ns呈显著负相关;TMFFLU和TMFFLE与TP、TN、NO3-N、NH3-Ns呈显著负相关,这表明生活污水和养殖废水对QNs的贡献最大.本研究结果将为提高水生植物对抗生素的修复效果,以及白洋淀生态修复和风险管控提供理论依据和数据支撑.  相似文献   
56.
该文基于三维荧光光谱技术,研究了恩诺沙星(ENR)、左氧氟沙星(LVFX)和诺氟沙星(NOR)3种喹诺酮类抗生素三维荧光光谱特征,并结合平行因子分析法(PARAFAC),实现了对ENR、LVFX和NOR 3种抗生素混合物单一组分定性及定量分析。荧光分光光度计扫描得到3种抗生素样品的三维荧光光谱,通过散射区域置零、插值等方法,解决了散射对三维荧光光谱的干扰,同时运用PARAFAC对荧光数据集进行组分解析。实验得出,3种抗生素最大荧光值和各自浓度之间R2均大于0.99,ENR、LVFX和NOR的检出限分别为0.74、0.43和0.20μg/L。PARAFAC方法成功解析出混合样本中ENR、LVFX和NOR组分。实验结果表明,基于PARAFAC法的三维荧光光谱技术具有良好的检出限和回收率,可同时对ENR、LVFX和NOR 3种喹诺酮类抗生素及其混合物进行快速、高灵敏的检测,实现了混合样本单图谱、同类别、多组分同时分析。  相似文献   
57.
底栖藻类作为湖泊中主要的生产者,其对抗生素较为敏感,目前有关喹诺酮类抗生素(quinolones, QNs)与底栖藻类群落的相关性研究较为缺乏,因此本研究选取白洋淀为研究区,利用超高效液相色谱串联质谱法(HPLC-MS/MS)检测水体QNs浓度,并分析底栖藻类群落结构和功能指标,利用商值法(RQ)计算QNs的生态风险值,建立QNs生态风险与底栖藻类群落指标的相关性。研究结果如下。(1)白洋淀QNs浓度存在明显时空差异。就空间分布而言,QNs的最高浓度出现在生境1(1 309.80ng·L~(-1));就时间变化而言,4月QNs浓度最高;就QNs种类而言,氟甲喹(flumequine, FLU)浓度最高(1 054.38 ng·L~(-1));(2)就藻类群落指标的空间分布而言,除藻密度(AD)、叶绿素a(Chl a)、叶绿素b(Chl b)、叶绿素b/a(Chl b/a)、绿藻比例(CHL)、蓝藻比例(CYA)、碱性磷酸酶(APA)、β-葡萄糖苷酶(GLU)、亮氨酸氨基肽酶(LEU)和无灰干重(AFDW)等指标最大值出现在生境2外,其他指标最大值出现在生境3;就时间分布而言,大部分底栖藻类群落指标11月值高于4月和8月;(3)除FLU的生态风险处于中等水平外,其余QNs生态风险较低;其中,8月生境2的生态风险值最高(RQ最大值为0.9446);(4) AD、Chl a、Chl b、叶绿素c(Chl c)、Chl b/a与RQ_(CIP)和RQ_(FLU)呈显著相关,其中Chl a与RQ_(FLU)的相关性显著(r=0.827,P<0.01)。结果表明,底栖藻类结构指标与QNs风险值相关性较为显著,因此,可考虑筛选较为敏感的底栖藻类群落结构指标,为富营养化湖泊生态监测方法研究提供理论基础及相关数据支撑。  相似文献   
58.
运用三维荧光光谱(EEMs)技术结合平行因子分析法(PARAFAC)及紫外-可见光谱技术(UV-vis),对周村水库四季变化过程中溶解性有机物(DOM)的分布及光谱特征进行了分析.结果表明:周村水库表层水体的氮素(总氮和溶解性总氮)和有机物(总有机碳和溶解性有机碳)的季节性差异显著,并且水库冬、春两季TN较多、TOC较少;表层水体DOM夏、秋两季的吸收系数a_(254)和a_(355)均高于冬、春季节,与有机物的分布相一致;四季的E3/E4均大于3.5,说明DOM以富里酸为主,E2/E3比值表明富里酸占DOM的比例夏、秋两季高于冬、春季节,除夏季外水库表层水体S_R均大于1,显示DOM主要为生物源;三维荧光通过PARAFAC解析出3种组分,分别为类腐殖质(C1)、可见区富里酸(C2)和类蛋白(C3);对3个组分进行相关性分析,结果显示,C1、 C2、C3之间具有显著的相关性(p0.01);DOM的总荧光强度及各组分的荧光强度均呈现出夏秋季高、冬春季低的特征,总荧光强度最大值为夏季的(1993.52±40.84) A.U.,最小值为春季的(1074.10±113.63) A.U.;周村水库各个季节间的DOM总荧光强度和荧光组分C1的荧光强度除夏、秋外均呈现显著的差异性(p0.05),组分C2和C3的荧光强度均呈现显著差异性(p0.05);周村水库四季的DOM生物源指数(BIX)为0.8~1.0,表明水库DOM具有较强的自生源特征,与腐殖程度指标(HIX)的结果相吻合;PCA分析显示,周村水库表层水体DOM的光谱特征差异明显,夏、秋两季的DOM光谱特征相近,冬、春两季的水体DOM特征相似;并且组分C1、C2、C3与DOM特征参数(FI、β:α)及溶解性有机碳(DOC)呈显著相关性(p0.01).通过对周村水库水体四季的DOM光谱特征进行研究,可以进一步分析水库水体的有机物污染特征,并为水库水质管理提供技术支持.  相似文献   
59.
申立娜  付雨  张璐璐  秦珊  剧泽佳  姚波  崔建升 《环境科学》2020,41(12):5470-5479
喹诺酮类抗生素(quinolone antibiotics,QNs)易富集于水生生物中,近年来在我国湖泊中广泛检出,且其生物富集系数和营养传递行为具有明显的时空异质性.本研究选取白洋淀9种优势鱼类为研究对象,分析14种QNs的生物累积特征及其与环境因子的相关性,评估了QNs健康风险.结果表明,白洋淀水体中∑QNs质量浓度范围为0.7400~1590 ng·L-1,其中氟甲喹(flumequine,FLU)、喹酸(oxolinic acid,OXO)和氧氟沙星(ofloxacin,OFL)检出率较高,FLU平均质量浓度最高;鱼类体内∑QNs含量范围为17.1~146 ng·g-1,其中环丙沙星(ciprofloxacin,CIP)和FLU平均含量较高.生物累积系数(bioaccumulation factors,BAF)范围(L·kg-1)为96.2(BAFMAR)~489(BAFCIP),表明QNs在鱼类中的生物累积能力较低.5种检出率较高的QNs[恩诺沙星(enrofloxacin,ENR)、FLU、马波沙星(marbofloxacin,MAR)、诺氟沙星(norfloxacin,NOR)和OFL]的营养放大因子(trophic magnification factors,TMF)范围为0.714(TMFMAR)~1.33(TMFENR),其中ENR呈营养放大,FLU、MAR和QNs呈营养稀释.理化参数与BAF和TMF相关性分析结果表明,pH、T、SD、DO、COD、TP、TN、NH4+-N、NO3--N和PO43--P与BAF和TMF相关性较为显著.健康风险评估结果表明,CIP的危害系数(hazard quotient,HQ,0.0040~0.026)显著高于其它QNs(≤0.0050),危害指数(hazard index,HI)范围为0.0010~0.035,具有高健康风险.因此,应制定更为严格的抗生素排放标准,减少湖泊外源有机质和营养物质输入,以减少污染物在鱼类体内的生物累积,降低抗生素污染水平和健康风险.  相似文献   
60.
为研究石家庄市挥发性有机物(VOCs)的化学特征和污染来源,于2017年3月至2018年1月取3个国控点进行环境VOCs的罐采样及分析,并结合臭氧(O3)及气象数据进行相关性分析,采用正交矩阵因子模型(PMF)开展溯源解析;为确定夏季O3的污染周期,利用小波分析研究其时序特征.结果表明,石家庄市采样期间VOCs浓度为(137.23±64.62)μg·m-3,以卤代烷烃(31.77%)、芳香烃(30.97%)和含氧VOCs(OVOCs,23.76%)为主.采样期间VOCs的季节变化为:冬季(187.7 μg·m-3) > 秋季(146.8 μg·m-3) > 春季(133.24 μg·m-3) > 夏季(107.1 μg·m-3),空间特征呈自西向东逐渐增加的格局.监测期内O3与VOCs、NO2呈显著负相关,与温度、日照时数、风速和能见度呈正相关.在夏季O3≤ 160 μg·m-3时,6月应关注气温开始上升后4~5 d的气象条件变化,而7~8月需关注7~8 d后的气象变动.PMF溯源解析了6个VOCs的来源,依次为:汽油车排放源(24.78%)、柴油车排放源(24.69%)、溶剂使用源(18.64%)、化工生产排放源(11.87%)、区域背景(10.84%)及制药工业生产排放源(9.17%);其中汽油车和柴油车排放源的O3生成潜势(OFP)贡献(54.98%)超过一半.因此,石家庄市夏季O3削减的关键是控制交通及工艺过程源的排放.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号