首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   70篇
  国内免费   234篇
安全科学   131篇
废物处理   14篇
环保管理   47篇
综合类   630篇
基础理论   112篇
污染及防治   36篇
评价与监测   38篇
社会与环境   26篇
灾害及防治   8篇
  2024年   6篇
  2023年   17篇
  2022年   32篇
  2021年   45篇
  2020年   33篇
  2019年   34篇
  2018年   31篇
  2017年   24篇
  2016年   27篇
  2015年   37篇
  2014年   63篇
  2013年   43篇
  2012年   50篇
  2011年   47篇
  2010年   43篇
  2009年   45篇
  2008年   69篇
  2007年   98篇
  2006年   53篇
  2005年   50篇
  2004年   33篇
  2003年   27篇
  2002年   24篇
  2001年   16篇
  2000年   20篇
  1999年   17篇
  1998年   11篇
  1997年   14篇
  1996年   11篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
排序方式: 共有1042条查询结果,搜索用时 140 毫秒
51.
重庆市主城区大气细颗粒物污染特征与来源解析   总被引:1,自引:0,他引:1  
重庆市主城区大气细颗粒物(PM_(2.5))浓度从1990s的100μg·m~(-3)下降至当前的约70μg·m~(-3),但仍高于环境标准限值.为探讨重庆市主城区PM_(2.5)化学组成与来源特征,于2012—2013年在渝北区大气超级站利用四通道采样仪连续采集了颗粒物样品,分析了其中水溶性离子、碳质组分和无机元素含量.采样期间,重庆市主城区大气PM_(10)和PM_(2.5)的年日均浓度分别为103.9和75.3μg·m~(-3),扩散条件不利的冬季,细颗粒物污染较为严重.受静稳天气影响的1月和2月,受沙尘影响的3月,及二次转化显著的6月是重庆市细颗粒物污染较重的月份.重庆市PM_(2.5)组成以有机物(OM,30.8%)为主,其次为硫酸盐(SO_4~(2-),23.0%)、硝酸盐(NO_3~-,11.7%)、铵盐(NH_4~+,10.9%)、地壳物质(Soil,8.2%)、元素碳(EC,5.2%)、K~+(1.1%)、Cl~-(1.0%)和微量元素(Trace,0.6%).较高的SO_4~(2-)浓度和逐步上升的[NO_3~-]/[SO_4~(2-)]比值反映了重庆市燃煤污染较重,同时机动车污染比例逐步增加.采用主因子分析/绝对主因子得分法解析了重庆城区细颗粒物5类主要来源是:二次粒子(41.7%)、燃煤(15.6%)、建筑/道路尘(12.4%)、土壤尘(11.0%)和工业尘(10.4%),通过各污染源季节变化及与其他结果对比,该源解析结果能够较可靠反映重庆市细颗粒物的来源信息.  相似文献   
52.
河南某市驾校地表灰尘多环芳烃组成、来源与健康风险   总被引:5,自引:4,他引:1  
采集河南省某市29所驾校的地表灰尘样品,应用气相色谱-质谱联用仪(GC-MS)测定样品中16种优控PAHs含量,用终生致癌风险增量模型(ILCR)评价灰尘PAHs不同暴露情景下(情景1、2、3分别为驾校工作5 a、10 a和20 a)的健康风险,用比值法、成分谱法和主成分因子载荷法揭示PAHs来源.结果表明,驾校灰尘ΣPAHs含量在198.21~3 400.89μg·kg-1之间,平均908.72μg·kg-1.单体PAHs含量较高的是萘、菲、蒽、荧蒽,含量最低的是二苯并[a,h]蒽,低环PAHs占ΣPAHs的55.79%,高环占44.21%.3种情景下的平均健康风险为情景3(3.71×10-7)情景2(1.85×10-7)情景1(9.27×10-8),只有一个驾校(J11)在情景3存在潜在健康风险,其他情景下均无风险.皮肤接触灰尘是最主要的PAHs暴露途径,其占总风险的64.21%;其次是误食途径,占总风险的33.04%;吸入途径可忽略不计.驾校灰尘PAHs主要来源为化石燃料不完全燃烧源和混合源,农田区驾校灰尘PAHs的柴油/天然气动力车排放源、燃煤源和汽油车排放源贡献率分别为56.44%、26.55%和17.01%,工业区驾校混合源、汽油车和炼焦/燃煤排放源贡献率分别为76.26%、22.85%和0.89%,混合区驾校燃煤源、天然气/柴油动力车排放源和汽油车排放源的贡献率分别为45.57%、45.41%和9.02%.灰尘PAHs含量及健康风险与其周边环境、前期土地利用状况密切相关.  相似文献   
53.
岩溶地下河水中多环芳烃、脂肪酸分布特征及来源分析   总被引:2,自引:1,他引:1  
为探究重庆青木关岩溶地下河水中多环芳烃(PAHs)和脂肪酸的含量组成、分布特征、来源及污染水平,2013年雨季和旱季分别于地下河中进行水样采集,并利用气相色谱-质谱联用仪(GC-MS)对水样中PAHs和脂肪酸的组分进行定量分析.结果表明,青木关地下河水中PAHs和脂肪酸的含量范围分别为77.3~702 ng·L~(-1)和3 302~45 254 ng·L~(-1).组成上,PAHs以2~3环为主,其比例高于90%,脂肪酸碳数范围为C10~C28,以饱和直链脂肪酸为主,其次为单不饱和脂肪酸.分布特征上,雨季:地下河水中各采样点PAHs的含量差异较小,脂肪酸的含量在入口、出露处和出口呈现依次降低的趋势,其中出露处和出口脂肪酸的含量较为接近;旱季:地下河水中PAHs含量在入口、出露处和出口呈现先降后升的趋势,脂肪酸含量在各采样点较为接近.总体上,地下河水中PAHs和脂肪酸的含量都表现为雨季显著高于旱季.来源分析表明,青木关地下河水中PAHs主要来源于该河流域煤和木材、农作物秸秆等生物质的燃烧;脂肪酸主要来自该河流域内硅藻、绿藻等水生藻类和细菌,其中以水生藻类的贡献占主导.地下河水受到PAHs中轻度污染,相对于旱季,雨季污染更严重.  相似文献   
54.
于2014年10月至2015年1月采用样线调查法对黄河三角洲自然保护区秋季迁徙期和越冬期水鸟群落结构进行调查研究,调查共包括8条样线40个观测点.结果表明:(1)秋季迁徙期共记录水鸟6目14科54种,国家Ⅰ级保护鸟类5种,国家Ⅱ级保护鸟类8种;越冬期共记录水鸟5目7科31种,国家Ⅰ级保护鸟类1种,国家Ⅱ级保护鸟类4种.(2)2个时期雁形目水鸟种类和数量均占优势,豆雁(Anser fabalis)、斑嘴鸭(Anas poecilorhycha)、赤膀鸭(Anas strepera)和绿头鸭(Anas platyrhynchos)为优势物种,丹顶鹤(Grus japonensis)、东方白鹳(Ciconia boyciana)和大大鹅(Cygnus cygnus)等珍稀水鸟也有一定的种群数量.(3)秋季迁徙期水鸟种数、数量和ShannonWiener多样性指数多于或高于越冬期.(4)5种典型生境之间水鸟种类和数量存在差异,天然水域是水鸟群落的主要分布区.(5)自然生境内的水鸟种数、数量和Shannon-Wiener多样性指数一般多于或高于人工生境.相似性分析结果表明,自然生境之间水鸟群落结构相似程度高于人工生境.  相似文献   
55.
模拟干旱胁迫对诸葛菜无机碳利用的影响   总被引:1,自引:0,他引:1  
为研究喀斯特适生植物的碳酸酐酶应对岩溶干旱机制,本实验以诸葛菜为研究对象,以聚乙二醇(polyethyleneglycol,PEG)浓度为控制因子,已知δ13 C值的NaHCO3为无机碳源模拟喀斯特干旱逆境,测定分析不同浓度PEG下诸葛菜叶片的碳酸酐酶活力、稳定碳同位素组成、净光合速率和叶绿素荧光等指标。结果表明,诸葛菜的碳酸酐酶活力在PEG胁迫浓度低于40g·L-1时显著性增高;碳酸氢根离子利用份额随PEG浓度变化不同,10g·L-1时利用份额最多,20g·L-1时诸葛菜的碳酸氢根离子利用份额与对照相比无显著性差异;净光合速率随着PEG浓度的增加而下降,且下降趋势成非线性关系;PEG浓度低于40g·L-1时,荧光参数显示光合系统未受到损坏。适当的渗透逆境胁迫下,诸葛菜表现出高碳酸酐酶活力应对逆境。诸葛菜可凭借碳酸酐酶作用交替利用碳酸氢根离子和大气中的二氧化碳,补充诸葛菜因渗透胁迫造成的水分和二氧化碳的不足,保护光合系统,减缓净光合速率的下降。  相似文献   
56.
长江近口段沿岸刀鲚生物量的时间格局   总被引:1,自引:0,他引:1  
为了解长江刀鲚Coilia nasus资源的变动状况,探讨沿岸水域对刀鲚资源的保育作用,于2002~2013年间用定制张网对长江靖江段沿岸鱼类作了每月2~3个样本的采集。分析结果显示,12a采集的369份样品中,刀鲚的出现频率达94.6%,分别占总渔获数量和重量的5.18%和5.46%。刀鲚平均CPUEN和CPUEW有16.7±19.9尾和106.6±109.5g,是沿岸鱼类群聚的优势种或次优势种。但其年资源量并不稳定,最高的2010年是最低2002年的5.4陪。平均体长123.6±37.0mm,平均体重仅7.5±8.2g。0+龄组占78.9%,1+龄组占20.7%,2+龄仅出现在4、5月份,且仅占当月个体数的3.0%,幼体是沿岸刀鲚群体的主要组成成分。从0+龄个体的月度体长分布看,当年孵化的幼鱼大多栖息在河岸水域,沿岸生境在维持刀鲚幼鱼资源上具有重要作用。分析显示,4月1日至6月30日的长江禁渔期虽可保护约42.6%的幼鱼个体,但从保护效果看,还因适当延长沿岸水域的禁渔时间。维护沿岸水域的生境完整性,也是保护长江刀鲚幼鱼资源的重要措施。  相似文献   
57.
广西五里峡水库夏季溶解无机碳行为的初步研究   总被引:11,自引:7,他引:4  
刘文  蒲俊兵  于奭  章程  区绎如  袁道先  杨会  唐伟 《环境科学》2014,35(8):2959-2966
为更加清晰地认识无机碳在岩溶水库水体中的循环转化过程,2013年7月初对位于岩溶区的广西五里峡水库沿流程方向不同地点不同深度水体进行现场监测.结果表明:1研究区水体水化学主要受碳酸盐平衡体系控制,水化学类型为HCO3-Ca+Mg型.2水体溶解无机碳(dissolved inorganic carbon,DIC)含量及其同位素组成δ13CDIC分布特征:沿流程方向从库尾到坝前同一深度不同取样点DIC含量呈减小趋势(DIC(平均):1.03~0.78 mmol·L-1),δ13CDIC则逐渐变重(δ13CDIC(平均):-10.21‰~-6.62‰).沿垂直方向从表层向库底DIC含量呈增加趋势(DIC(平均):0.86~1.05 mmol·L-1),δ13CDIC则逐渐变轻(δ13CDIC(平均):-7.88‰~-13.39‰).分析认为:1碳酸盐岩溶解沉淀过程对研究区水体DIC含量及δ13CDIC的影响有限或被其它过程平抑.2研究区水体存在热分层现象,其通过影响水库不同部位、不同深度水生生物新陈代谢的方向及强度、有机质分解强度等对水体DIC及δ13CDIC产生影响,使之出现前述变化趋势.  相似文献   
58.
某石油化工园区秋季VOCs污染特征及来源解析   总被引:6,自引:4,他引:2  
利用快速连续在线自动监测系统对某典型石油化工园区2014年秋季(9、10、11月)大气中VOCs进行监测,并对其组成、光化学反应活性、时间变化特征和来源进行解析.结果表明:秋季大气中VOCs的混合体积分数明显高于国内外其他城市和工业地区,且烷烃是大气中VOCs的最主要成分.研究区秋季3个月份大气中VOCs的混合体积分数之间差异不显著,但各种烃类的日夜变化特征明显:烷烃、烯烃和芳香烃呈现"单峰单谷"变化趋势,乙炔的变化趋势呈"W"型.PMF受体模型解析结果表明主要来源于天然气交通及溶剂、炼油厂的泄漏或挥发等过程,其次为其他交通来源,沥青对于研究区VOCs来源也有一定的贡献.等效丙烯体积和最大臭氧生成潜势对VOCs的光化学反应活性计算结果表明,烯烃和烷烃分别是各自混合体积分数的最主要的贡献者.  相似文献   
59.
某典型石油化工园区冬季大气中VOCs污染特征   总被引:6,自引:2,他引:4  
利用TH-300B挥发性有机物(volatile organic compounds,VOCs)在线监测系统于2014年12月~2015年2月对我国某石油化工园区的VOCs进行连续在线监测.分析了其组成特征、时间变化特征、来源以及光化学活性特征.结果表明,研究区冬季大气中VOCs的混合体积分数较高,烷烃占据主导地位,占TVOCs的86.73%;TVOCs、烷烃、烯烃、芳香烃的昼夜变化特征均表现为夜间高而白天低,且烷烃、烯烃的变化与TVOCs较为一致.利用主成分分析-多元线性回归(PCA-MLR)模型解析得到5个因子,分别表征燃料挥发源、工业排放源、汽油车尾气和植物排放混合源、柴油车尾气排放源和燃料燃烧源,其贡献率分别为60.02%、8.50%、2.07%、12.21%、17.20%.利用Propy-equiv法和MIR法计算得出该研究区冬季大气中各类VOCs对臭氧生成的相对贡献率的大小均表现为烷烃烯烃芳香烃,其中环戊烷、正丁烷和1-戊烯的贡献率较高,气团光化学年龄较长.  相似文献   
60.
开封城市土壤磷素组成特征及流失风险   总被引:3,自引:2,他引:1  
为深入了解城市土壤磷素组成特征及其对受纳水体的影响,以开封城市表层土壤为研究对象,分析开封城市不同功能区土壤磷素的组成特征,并采用"突变点"法计算土壤磷素流失临界值,探讨开封城市不同功能区表层土壤磷素流失风险.结果表明,开封城市土壤总磷为400~1 427 mg·kg~(-1),其中无机磷占65%~99%;速效磷(Olsen-P)和易解吸磷分别为3.41~115.03 mg·kg~(-1)和0.01~9.40 mg·kg~(-1),与土壤磷素背景值相比,城市土壤磷素呈现明显集聚.开封城市土壤总磷和速效磷均呈现出东高西低,中心老城区高于新城区的空间分布格局;在不同功能区分布上,居民区土壤各形态磷素含量均最高.开封城市土壤磷素流失临界值对应的Olsen-P为22.18 mg·kg~(-1),超过临界值的土样占总土样数的33.64%,磷素流失风险最高的区域亦分布在中心老城区.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号