首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   25篇
  国内免费   13篇
安全科学   12篇
废物处理   1篇
环保管理   3篇
综合类   37篇
基础理论   20篇
污染及防治   4篇
评价与监测   3篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   23篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有80条查询结果,搜索用时 383 毫秒
71.
选择四氯乙烯(PCE)作为特征污染物,通过二维砂箱实验探究3种介质情景中,污染源区结构特征对Tween 80冲洗去除PCE的影响.采用透射光法监测PCE的运移及去除过程,定量测定PCE的饱和度.进而采用不连续的离散状与连续的池状PCE体积比(GTP)定量表征污染源区结构特征.结果表明,PCE在含透镜体介质中运移时,运移路径延长,离散状PCE增多.离散状PCE与Tween 80溶液的有效接触面积较大,被优先溶解去除,而细砂层上部的污染池的比表面积和接触面积较小,溶解能力有限,远比运移路径上的PCE难以去除.此外,初始离散状PCE较多,GTP较大,有利于池状PCE溶解转变为离散状PCE,PCE去除率增大.因此对于实际污染场地,需要详细分析DNAPLs污染源区结构特征,以助于评估表面活性剂冲洗技术的修复效率及试剂消耗.  相似文献   
72.
非离子表面活性剂Tween80增溶萘实验模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
白静  赵勇胜  周冰  赵晓波 《中国环境科学》2013,33(11):1993-1998
利用非离子型表面活性剂增溶萘的效果,同时分析温度、离子强度和共存有机物苯、硝基苯对增溶效果的影响.结果表明,Tween80显著提高萘在水相中的溶解性,10.0g/L的Tween80溶液中,萘的表观溶解度达到489.70mg/L;温度和离子强度的增加提高了萘的表观溶解度,并呈现线性正相关,其中温度的影响作用大于离子强度;萘的增溶体系中存在苯或硝基苯,硝基苯或苯与萘为竞争增溶关系,苯的抑制程度大于硝基苯.  相似文献   
73.
目的 探明空气驱工艺条件下套管钢的腐蚀规律,为空气驱工况条件下套管钢的腐蚀防护提供数据支撑.方法 采用高温高压失重挂片法评价N80碳钢的腐蚀速度,利用扫描电镜、能谱分析等手段考察金属表面腐蚀产物膜的形态与组成,研究氧分压、温度以及腐蚀时间对注空气驱油过程中N80钢的腐蚀影响.结果 随着氧分压的增加,N80钢的腐蚀速率总...  相似文献   
74.
有关内分泌干扰物三苯基锡(TPhT)生物降解的强化措施和降解机制的报道较少,TPhT降解过程中脱苯反应是同步还是逐步发生还不明确.为阐明这些问题,研究了吐温80对苏云金芽孢杆菌降解TPhT及其降解产物的影响.结果表明,吐温80能明显提高TPhT在水中的溶解度.苏云金芽孢杆菌和80 mg·L-1吐温80共同处理1 mg·L-1TPhT 2 d后,TPhT残余浓度降至48.4%.降解过程,吐温80可显著地减少细胞内Na+、NH+4和Mg2+向胞外的释放,增加对细胞外Cl-、PO3-4和K+的吸收.代谢产物分析表明,苯基锡的生物降解始于苯环裂解,而不是苯环和锡原子之间共价键的分裂.TPhT中各苯环的开环反应可以单独进行,亦可同步发生,进而生成二苯基锡、一苯基锡和无机锡.  相似文献   
75.
1株高效BBP降解菌的分离与特性研究   总被引:2,自引:1,他引:1  
陈湖星  杨雪  张凯  钟秋  郭佳  王攀  熊丽  刘德立 《环境科学》2013,34(7):2882-2888
从湖北省荆沙河泥样中富集培养分离得到了1株能够以邻苯二甲酸丁基苄基酯为唯一碳源和能源生长的细菌并命名为HS-B1.采用形态学、生理生化和16S rDNA序列分析对其进行了鉴定,发现HS-B1是1株杆状、需氧、革兰氏阴性细菌,接触酶呈阳性反应,氧化酶呈阴性反应,不产硫化氢气体,且该菌的16S rDNA序列与琼氏不动杆菌(Acinetobacter junii)的相似性高达99%.因此初步鉴定该菌株为不动杆菌(Acinetobacter sp.).摇瓶实验表明,菌株HS-B1生长和BBP降解的最适培养条件为35℃,pH 8.0.采用0.10 mmol.L-1非离子型表面活性剂吐温-80提高了BBP在水溶液中的表观溶解度,发现在最适培养条件下,HS-B1能够在48 h内将浓度为1 000 mg.L-1BBP完全降解,证明是一株高效降解菌.底物广谱性实验中,菌株HS-B1也能够有效利用DMP、DEP、DBP等邻苯二甲酸酯类化合物,说明该菌株在处理邻苯二甲酸酯类化合物的污染治理中有独特的应用潜力.  相似文献   
76.
大量的非离子表面活性剂应用于工业生产和人类日常生活,在洗涤污垢的同时这类表面活性剂也排入环境造成污染,吐温-80是其中之一。文章从生活污水污染的土壤中分离纯化一株高效降解吐温-80的真菌菌株,其与尖孢镰刀菌(Fusarium oxysporum)亲缘关系最近。该菌株降解吐温-80的最适温度30℃,pH为6.0。吐温-80浓度高于8000mg/L条件下此菌株仍然旺盛生长,但装液量大于80mL(100mL瓶),小于40mL(100mL瓶)以及转速小于50r/min,大于130r/min时生长迟缓。  相似文献   
77.
多溴联苯醚好氧生物降解研究   总被引:10,自引:2,他引:8  
丁娟  周娟  姜玮颖  高士祥 《环境科学》2008,29(11):3179-3184
研究了好氧真菌白腐菌对4, 4′-二溴联苯醚(BDE15)和十溴联苯醚(BDE209)的降解,并考察了不同浓度Tween 80β-环糊精的加入对BDE15和BDE209表观溶解度和生物降解的影响.结果表明,白腐菌对BDE209和BDE15均有显著降解作用,培养10 d后,BDE209的降解率达到43.0%,降解了约69.7 μg,BDE15则由150 μg降至4.8 μg,扣除其挥发损失,降解率达62.5%.低浓度Tween 80(≤700 mg/L)和β-环糊精对白腐菌降解BDE209均有明显的促进作用,而高浓度的Tween 80(900 mg/L)则会抑制白腐菌生长,从而抑制其降解作用.Tween 80β-环糊精(500 mg/L)对BDE15的降解均有一定抑制作用.Tween 80β-环糊精对BDE209降解的促进作用主要是由于其对BDE209的增溶作用,对BDE15的抑制作用可能是由于Tween 80胶束和β-环糊精空腔对BDE15的包裹降低了水中可直接利用的自由态BDE15,影响了降解速度.  相似文献   
78.
吐温80对硝基苯的增溶作用和无机电解质作用机理研究   总被引:3,自引:1,他引:2  
李隋  赵勇胜  徐巍  戴宁 《环境科学》2008,29(4):920-924
研究了在10℃条件下,非离子表面活性剂吐温80对硝基苯的增溶作用.结果表明,吐温80在临界胶束浓度(CMC)以上能够显著提高硝基苯的溶解度,对硝基苯的增溶曲线呈线性关系,MSR值为5.093,lgKm为3.499.硝基苯的增溶作用为吐温80胶束中聚氧乙烯链形成的聚醚微环境作用的结果.并考察了4种无机电解质NaCl、KCl、CaCl2、MgCl2对硝基苯增溶作用的影响,结果表明,4种高浓度(≥500 mg·L-1)无机电解质的加入,均使吐温80溶液中硝基苯的浓度有所增加,增溶曲线仍呈线性关系.在吐温80与无机电解质质量比为2∶1、5∶1和10∶1时,增溶曲线的MSR值与lgKm值均有提高,硝基苯在吐温80胶束中的分配增强.原因为随着无机电解质与吐温80胶束发生盐析作用.吐温80胶束体积变大,为硝基苯提供了更大的增溶空间.非离子表面活性剂-无机电解质复配体系可以作为表面活性剂强化修复中的一种冲洗液,提高非离子表面活性剂的使用效率,降低成本.  相似文献   
79.
采用振荡平衡法和淋洗法,研究了污灌条件下非离子表面活性剂Tween-80在表层土壤和深层土壤上的吸附行为及其对有机农药甲萘威迁移的影响。结果表明:在振荡平衡条件下,低Tween-80浓度的污水灌溉会促进甲萘威在表层土壤中的吸附,而高Tween-80浓度的污水灌溉会抑制甲萘威在深层土壤中的吸附;在淋洗条件下,Tween-80在深层土壤中表现出较强的吸附能力。  相似文献   
80.
通过动电位极化方法研究了温度、溶解氧、pH值等环境因素对X80管线钢在NS4溶液中腐蚀性的影响,并将三者对X80钢腐蚀速率的影响程度进行了灰关联分析.动电位极化曲线试验结果表明:随着NS4溶液中溶解氧含量的减少,X80钢的腐蚀电流密度(icorr)降低,耐腐蚀性增加;随着溶液温度升高和溶液pH值降低,X80钢的腐蚀电流密度增加,耐腐蚀性下降;灰关联分析结果表明:根据关联度的大小,环境因素对X80钢腐蚀速率影响大小的顺序为溶解氧、溶液pH值、温度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号