首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
  国内免费   13篇
安全科学   2篇
综合类   24篇
基础理论   8篇
污染及防治   37篇
评价与监测   8篇
社会与环境   4篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   11篇
  2012年   3篇
  2011年   12篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
71.
Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCFtot) and NH4NO3-extractable metal concentrations in mineral soil (BCFlab). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCFlab for both Zn and Cd described the data more closely than BCFtot. Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals.  相似文献   
72.
Samples from 18 short sediment cores were analyzed for major and trace metals (Al, Fe, Ca, K, Mg, Mn, Si, Ti, Pb, Zn, Cu, Ni, and Cr), 210Pb, 137Cs, total organic carbon, grain size, and mineralogical composition to find the record of major environmental changes, either natural or anthropogenic, and to establish their chronologies. Some sediments are characterized by nearly constant composition over time, but others clearly show signs of an increasing marine influence, as an increase of the carbonate contents, after the opening of the Malamocco-Marghera Canal in 1969. These changes sometimes obscure the real pattern of pollutants and tracers, which is revealed by normalization against Al. Zn is the most important contaminant, with concentration factors up to 9.3 times the background level, and the most contaminated sediments are those within a few kilometers from the industrial district of Porto Marghera. 210Pb activity-depth profiles were used to calculate apparent accumulation rates that provide a basis for the assessment of metal fluxes. The sediments of several sites show a significant increase in anthropogenic metal contamination starting from the second decade of last century, with maximum inputs from 1930 to 1970. The decrease of heavy metal concentrations observed in surficial sediments of some sampling sites could be related to a recent reduction of pollutant inputs.  相似文献   
73.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   
74.
GOAL, SCOPE AND BACKGROUND: As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. METHODS: The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. RESULTS AND DISCUSSION: Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. CONCLUSIONS: There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. RECOMMENDATIONS AND OUTLOOK: To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation. Decrease in the bioavailability to farmlands would reduce the accumulation of heavy metals in food. Alternatively, one could increase the bioavailability of plants to extract more heavy metals.  相似文献   
75.
鸢尾和菖蒲不同器官对富营养化水体中氮磷的积累效应   总被引:10,自引:0,他引:10  
李琳  刘娜娜  达良俊 《环境污染与防治》2006,28(12):901-903,907
将鸢尾和菖蒲种植在椰丝基质上并放入富营养化的水塘中,实验在自然条件下进行.分别测定鸢尾和菖蒲的根、茎、叶不同器官中氮、磷的含量和植物种植期间生物量的变化状况.结果表明,植物根、茎、叶对氮、磷的积累量有显著差异,叶是两种植物积累氮、磷的主要器官;叶中的氮、磷积累量在实验后期,即11月中下旬时达到峰值;菖蒲各器官氮、磷含量均高于鸢尾,但是单株鸢尾对氮、磷的积累量比菖蒲大.  相似文献   
76.
Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth.  相似文献   
77.
酚在鲤鱼体内的积累,分布和释放试验研究   总被引:1,自引:0,他引:1  
研究酚在鲤鱼体内积累,分布和释放规律。鲤鱼饲养于0.005mg/L,0.025mg/L和0.05mg/L酚液中,在32d内随时间延长积累量增加,肝,性腺是酚的主要蓄积器官。随酚浓度升高,鲤鱼体的浓缩系数下降。将受酚污染后的鲤鱼重返清水中饲养,42d后肌肉,鳃中酚释放率高,肝脏释放率低。  相似文献   
78.
大气汞在土壤中转化及其与土壤汞富集的相关性   总被引:18,自引:0,他引:18  
通过现场调查与模拟试验相结合的方法,研究了大气汞对土壤汞富集的影响及其进入土壤后的形态转化。  相似文献   
79.
The aim of the study was to compare accumulation efficiency of Al, Ba and nutritional elements (Ca, Fe, K, Mg, Mn, Na) exhibited by six edible mushrooms collected in particular regions of Poland during the last 20 years. The studied mushroom species were Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, Leccinum aurantiacum, Suillus luteus and Xerocomus badius. The highest and the lowest concentrations of the elements in tested mushroom species were 11 – 410, 34 – 337, 16785 – 34600, 140 – 607, 12 – 75 and 16 – 143 mg kg?1d.m., respectively. The highest average concentrations of Al, Mg and Mn were observed in Suillus luteus fruiting bodies, while for Ba, Ca, K and Na it was in Lactarius deliciosus. BCF >1 was found for K and Mg in all tested mushroom species and additionally for the highest Ca and Na concentrations of all tested mushroom species except for C. cibarius and S. luteus, respectively. For the other tested elements (Al, Ba, Fe and Mn) BCF values < 1 were recorded.  相似文献   
80.
Ban-nai T  Muramatsu Y  Amachi S 《Chemosphere》2006,65(11):2216-2222
Five strains of basidiomycetes (Lentinula edodes, Coprinus phlyctidosporus, Hebeloma vinosophyllum, Pleurotus ostreatus and Agaricus bisporus), one strain of ascomycete (Hormoconis resinae) and six strains of imperfect fungi (Penicillium chrysogenum, Penicillium roquefortii, Cladosporium cladosporioides, Alternaria alternata, Aspergillus niger and Aspergillus oryzae) were cultured in a liquid medium containing a radioactive iodine tracer (125I), and were tested for their abilities to volatilize or accumulate iodine. Of the fungal strains tested, 11 strains volatilized a considerable amount of iodine, with L. edodes showing the highest volatilization rate of 3.4%. The volatile organic iodine species emitted from imperfect fungi cultures was identified as methyl iodide (CH3I). In contrast, six fungal strains in 12 strains accumulated a considerable amount of iodine from the medium with concentration factors of more than 1.0. Among these, Alt. alternata and Cl. cladosporioides accumulated more than 40% of the iodine in their hyphae, and showed high concentration factors of 22 and 18, respectively. These results suggest that filamentous fungi have a potential to influence the mobility and speciation of iodine by volatilization and accumulation. Considering their great biomass in soils, filamentous fungi may contribute to the global circulation of stable iodine and also the long-lived radioiodine, 129I (half-life: 1.6 × 107 years), released from nuclear facilities into the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号