首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   10篇
  国内免费   41篇
安全科学   9篇
废物处理   5篇
环保管理   2篇
综合类   72篇
基础理论   11篇
污染及防治   20篇
评价与监测   4篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   10篇
  2013年   8篇
  2012年   11篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
71.
由加油站附近污染土壤分离到一株好氧共代谢降解三氯乙烯的菌株Em-1,对其进行了形态学、生理生化和分子鉴定,表明为假单胞菌属。该菌可以利用甲苯为唯一碳源生长,可以以甲苯为生长底物降解三氯乙烯。对Em-1在甲苯中的生长曲线进行了分析,发现经过活化的菌株在甲苯培养基中8 h左右进入对数生长期。在摇瓶水平上进行了连续降解实验,表明甲苯经过24 h即消耗完毕,在含200 mg/L甲苯和50 mg/L三氯乙烯的无机盐培养基中,经168 h培养,三氯乙烯去除率达29.6%。为研究微生物共代谢降解三氯乙烯提供了借鉴。  相似文献   
72.
地下水三氯乙烯原位生物修复及其影响因素综述   总被引:1,自引:0,他引:1  
对地下水三氯乙烯(TCE)原位生物修复技术的研究现状进行了综述,阐述了三氯乙烯(TCE)好氧共代谢和厌氧还原脱氯的降解过程,将地下水TCE原位生物修复的影响因素归结为生物因素和工程因素.其中生物因素是指与TCE生物降解机理相关的因素,工程因素是指与场地修复工程的设计和运行有关的因素.结果表明,目前生物因素研究较为成熟;工程因素的影响更为普遍,建立正确的场地概念模型对其修复的成败有重要作用.因此,TCE原位生物修复设计前应更注重对污染场地的水文地质条件和水化学条件的调查,并结合数值模拟方法对污染场地进行更准确的概化.  相似文献   
73.
过硫酸钠对砂壤土中三氯乙烯的氧化研究   总被引:3,自引:0,他引:3       下载免费PDF全文
以过硫酸钠(Na2S2O8)为氧化剂,柠檬酸(CA)螯合Fe(Ⅱ)溶液作为活化剂,对砂壤土中的三氯乙烯(TCE)进行处理.采用正交试验获得优化操作条件为: Na2S2O8浓度5mmol/L,Fe(Ⅱ)浓度2.5mmol/L,CA浓度0.25mmol/L,反应时间30min.在此条件下,土壤中不同浓度的TCE去除率均在93%以上.对于污染程度高的土壤,采用连续氧化处理可达到较高的修复目标要求.土柱实验结果表明经过Na2S2O8溶液氧化7d后,TCE氧化率达到88.9%以上,且去除效果与处理方式有关,分次加入方式的效果最好.  相似文献   
74.
碱性缺氧环境下地下水中苯和甲苯的生物降解   总被引:1,自引:0,他引:1  
在缺氧环境下,不额外加入电子受体和营养盐,从长期受原油污染的包气带介质中分离、培养驯化得到了降解苯或甲苯的3种优势菌群:B-bacteria、T-bacteria和M-bacteria,采用批试验方法研究了高pH环境下3种菌群降解苯和甲苯的速率。结果表明:苯和甲苯的降解符合零级反应动力学,速率常数在0.22~0.68 mg/(L.d)。初始pH从8.7升高到9.6和10.6时,B-bacteria降解苯的速率降低都在10%以内;T-bacteria降解甲苯的速率降低率从pH9.6时的16.22%剧增到pH10.6时的41.23%;而M-bacteria降解苯和甲苯的速率降低从pH9.6时的30%左右增到pH10.6时的45%左右。高pH环境下微生物仍能完全降解苯和甲苯。故设计化学-生物连续反应格栅治理该类污染羽时,在两个单元中间可不构筑pH调节缓冲单元。  相似文献   
75.
76.
采用螯合剂柠檬酸(CA)强化纳米零价铁(nZVI),活化过硫酸钠(PS)体系,降解水溶液中的三氯乙烯(TCE),分别考察了PS、CA、nZVI投加量、溶液初始pH和无机阴离子对TCE降解效果的影响,确定了在TCE降解过程中起主导作用的活性氧自由基,并验证了PS/nZVI/CA体系降解实际地下水中TCE的效果。结果表明:投加适量的CA可以明显提高PS/nZVI体系对TCE的降解效果,但当CA浓度过高时,TCE降解反而受到抑制,过量或不足的PS、nZVI均会降低TCE的降解率;当溶液初始pH为3~9时,PS/nZVI/CA体系可有效降解TCE;溶液中存在的Cl–和HCO_3~-会抑制TCE的降解,其中HCO_3~-的抑制作用大于Cl–;自由基清除实验和电子顺磁共振实验表明PS/nZVI/CA体系中产生了HO·、SO_4~-·和O _2~-·活性氧自由基,其中HO·、SO_4~-·对TCE降解起主导作用;CA的加入有利于实际地下水中TCE的降解,PS/nZVI/CA体系相比PS/nZVI体系,更适应实际地下水中各种水质条件的冲击,具有实际应用前景。  相似文献   
77.
Activities at a former Chemistry Triangle in Bitterfeld, Germany, resulted in contamination of groundwater with a mixture of tdchloroethylene(TCE) and monochlorobenzene(MCB). The objective of this study was to develop a barrier system,which includes an ORC(oxygen release compounds) and GAC(granular activated carbon) layer for adsorption of MCB and bioregeneration of GAC, a Fe^0 layer for chemical reductive dechlorination of TCE and other chlorinated hydrocarbon in situ. A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system. This experiment was performed using a series of continuous flow Teflon columns including an ORC column, a GAC column, and a Fe^0 column. Simulated MCB and TCE contaminated groundwater was pumped upflow into this system at a flow rate of 1.1 ml/min. Results showed that 17%-50% of TCE and 28%-50% of MCB were dissipated in ORC column. Chloride ion, however, was not released, which suggest the dechlorination do not happen in ORC column. In GAC column, the adsorption of contaminants on activated carbon and their induced degradation by adapted microorganisms attached to the carbon surface were observed. Due to competitive exchange processes, TCE can be desorbed by MCB in GAC column and further degraded in iron column. The completely dechlorination rate of TCE was 0.16-0.18 cm^-1, 1-4 magnitudes more than the formation rate of three dichloroethene isomers. Cis-DCE is the main chlorinated product, which can be cumulated in the system, not only depending on the formation rate and its decaying rate, but also the initial concentration of TCE.  相似文献   
78.
79.
四氯乙烯(PCE)和三氯乙烯(TCE)是地下水中典型的卤代有机化合物,严重威胁生态环境与人体健康.为获得氯代乙烯高效厌氧降解菌剂并探究其在污染地下水中的应用潜能,利用某工业污染场地的地下水,通过投喂PCE或TCE进行长期富集培养,获得了可将PCE和TCE完全脱氯成无毒乙烯的厌氧菌剂W-1.菌剂W-1的PCE和TCE脱氯速率分别是(120.1 ±4.9) μmol·(L·d)-1和(172.4 ±21.8) μmol·(L·d)-1.16S rRNA基因扩增子测序和qPCR结果表明,98.3 μmol PCE还原脱氯至顺-1,2-二氯乙烯(cis-1,2-DCE)时,Dehalobacter丰度从1.9%增长至57.1%,基因拷贝数每释放1 μmol Cl-增加1.7×107 copies;cis-1,2-DCE完全还原脱氯至乙烯时,Dehalococcoides丰度从1.1%增长至53.8%;PCE完全还原脱氯至乙烯过程中Dehalococcoides基因拷贝数每释放1 μmol Cl-增加1.7×108 copies.以上结果说明DehalobacterDehalococcoides协同互作实现PCE完全降解解毒.当菌群W-1以TCE为电子受体时,222.8 μmol TCE完全还原脱氯至乙烯时候,Dehalococcoides丰度从(29.1 ±2.4)%增长至(77.7 ±0.2)%,基因拷贝数每释放1 μmol Cl-增加(1.9 ±0.4)×108 copies.结合PCR和Sanger测序,获得了菌剂W-1中主要脱卤菌Dehalococcoides LWT1较完整的16S rRNA基因序列,其与D. mccartyi strain 195 16S rRNA基因序列相似度达100%.将菌群W-1添加至受TCE(418.7 μmol·L-1)污染的地下水中,28 d内实现了(69.2 ±9.8)%的TCE被完全脱毒至乙烯,TCE脱氯速率为(10.3 ±1.5) μmol·(L·d)-1.研究成果可为PCE或TCE污染地下水开展厌氧微生物修复提供菌剂资源和理论指导.  相似文献   
80.
多孔介质中三氯乙烯的非线性吸附-对流-弥散模型   总被引:2,自引:0,他引:2  
研究三氯乙烯(TCE)在含水层中的迁移转化规律,对评价其在环境中的影响、预测其在环境中的行为规律及确定相应的修复技术有着重要的意义.TCE在细砂中的等温吸附规律研究采用批试验和模拟柱试验方法.批试验结果采用四种不同的非线性等温吸附模型进行拟合.结果显示,Linear-Langmuir-Freundlich (LLF) 模型的拟合效果最佳,且该模型能较好地描述表面吸附和分配作用.利用经典对流扩散模型,将以KCl为示踪剂的柱试验结果采用非线性最小二乘法反演模拟柱中的纵向弥散度;利用非线性吸附对流扩散模型,将TCE的模拟柱试验结果采用遗传算法反演吸附参数;结果显示Langmuir等温吸附模型描述柱试验中的吸附模式最好.即批试验与柱实验中的吸附模式是不同的.该结论表明必须重新审视非平衡吸附理论在运移模型中的适用性,以及该理论适用的前提条件.在试验结果和模型反演获得的参数基础上确定的TCE在多孔介质中运移的一维非线性吸附-对流-扩散模型,能够很好地揭示TCE在多孔介质中的运移规律,且模型中的阻滞系数是质量浓度的非线性函数.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号