首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   668篇
  免费   79篇
  国内免费   348篇
安全科学   69篇
废物处理   34篇
环保管理   35篇
综合类   590篇
基础理论   225篇
污染及防治   75篇
评价与监测   61篇
社会与环境   3篇
灾害及防治   3篇
  2024年   10篇
  2023年   37篇
  2022年   34篇
  2021年   44篇
  2020年   46篇
  2019年   41篇
  2018年   22篇
  2017年   32篇
  2016年   30篇
  2015年   50篇
  2014年   59篇
  2013年   55篇
  2012年   53篇
  2011年   49篇
  2010年   39篇
  2009年   51篇
  2008年   41篇
  2007年   55篇
  2006年   33篇
  2005年   36篇
  2004年   30篇
  2003年   20篇
  2002年   29篇
  2001年   23篇
  2000年   19篇
  1999年   19篇
  1998年   16篇
  1997年   24篇
  1996年   18篇
  1995年   20篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   12篇
  1990年   9篇
  1989年   4篇
  1988年   1篇
排序方式: 共有1095条查询结果,搜索用时 15 毫秒
91.
巯基化合物在万寿菊镉解毒中的作用   总被引:2,自引:0,他引:2  
采用水培实验方法研究了万寿菊体内镉积累和解毒与巯基化合物含量的关系。万寿菊植株分别在镉浓度为0、0.1、0.5、2和8 mg/L的营养液中暴露7 d,测定了根、茎、叶中镉、非蛋白巯基(NPT)、半胱氨酸(Cys)、γ-谷氨酰半胱氨酸(γ-EC)、谷胱甘肽(GSH)和植物络合素(PCs)的含量。植物根、茎、叶中镉含量都随着镉暴露浓度的增加而增加。当溶液中镉浓度较低(0.1~2 mg/L)时,茎叶中NPT、PCs、Cys和γ-EC含量随着镉浓度增加而增大;当镉浓度较高(8 mg/L)时,茎叶中PCs含量迅速降低,GSH含量大幅度增高。在根部,这些巯基化合物的含量几乎不受镉处理影响,且含量较低。以上研究结果表明:PCs在万寿菊镉的解毒机制中发挥一定的作用,暴露于高浓度的镉,GSH比PCs起着更为重要的解毒作用。  相似文献   
92.
全氟烷基磷酸是一种新型全氟化表面活性剂,被广泛应用于匀染剂、湿润剂和农药中的消泡添加剂等。在美国,基于对其潜在毒性的考虑,美国环境保护总署已禁止全氟烷基磷酸在粮食作物农药中使用。从全氟烷基磷酸的注册使用情况、结构与环境行为、环境介质中的浓度水平和生物暴露毒性等方面分别展开论述,旨在为中国开展该类物质的环境研究提供可借鉴依据。  相似文献   
93.
针对含全氟辛酸(PFOA)的工业废水及应对PFOA的污染突发事件,采用PAFC及其复配粘土矿物凹凸棒和沸石进行混凝实验,并对几个影响因素进行了考察。结果表明,在PAFC的最佳投加量10 mg/L时,PFOA和浊度的去除率分别达到70.25%和99.42%,PAFC混凝处理PFOA的效果优于PAC;pH值对PAFC去除PFOA有一定的影响,当pH大于6时有利于PFOA的去除;PFOA和浊度的去除率随原始浊度的增加而增加;活性炭、盐酸改性凹凸棒、盐酸改性沸石、CT-MAB改性的沸石复配PAFC均可提高PFOA的去除率;改性处理后的沸石应用于PFOA的处理中,有望降低处理成本。  相似文献   
94.
《世界环境》2012,(2):94-95
法新社2012年2月16日为减缓全球变暖的速度,减少对人体健康的损害,美闺宣布将与加拿大、墨西哥、瑞典、加纳、孟加拉国以及联合国环境规划署联合发起全球性的气候和清洁空气联盟,减排短暂污染物,采取行动遏制黑碳(煤烟)、甲烷以及氢氟碳化合物(HFCs)的排放。  相似文献   
95.
钯掺TiO2光催化降解全氟辛酸   总被引:2,自引:2,他引:0  
全氟辛酸(perfluorooctanoic acid,PFOA)以其分布广泛性、生物蓄积性、生物毒性强而成为全球关注的一种新型持久性有机污染物.采用化学还原法制备钯掺二氧化钛(Pd-Ti O2)催化剂,利用XRD、FESEM、UV-vis DRS对催化剂进行表征,并考察其在365 nm紫外光照射下对PFOA的光催化降解效果.结果表明,化学还原的制备方法使Ti O2粒径减小、比表面积增大且对紫外光的吸收性能增大,但并不引起PFOA光催化效果的改变.而Pd掺杂后大大增强了PFOA的降解效果,反应7 h后溶液中氟离子浓度为6.62 mg·L-1,是Ti O2(P25)的7.3倍.投加俘获剂与通入氮气的实验证明,在PFOA的降解过程中·OH起重要作用,氧气的存在可促进PFOA的降解.采用UPLC-QTOF-MS对产物进行鉴定分析,PFOA的可能降解过程是经h+氧化后发生脱羧基反应,产生的全氟烷烃自由基(·CnF2n+1)被·OH氧化,脱氟生成短链全氟羧酸.Pd能作为电子(e-)捕获剂、加速e-向O2等电子受体的转移,从而缓解e-累积,提高对PFOA的降解效果.  相似文献   
96.
郝薛文  李力  王杰  曹燕  刘建国 《环境科学》2015,36(8):3106-3118
本研究系统梳理了国际学术界关于全氟和多氟烷基化合物(perfluoroalkyl and polyfluoroalkyl substances,PFASs)的术语、范畴和应用物质的界定与变迁,以PFASs的环境危害性评估和暴露评估为重心,综述评析当前关于PFASs环境风险评估研究现状、不确定性和发展趋势.总体上,PFASs风险评估正面临着物质谱系复杂、种类众多、衍生关系复杂、商业秘密及风险不确定的复杂局面.尽管长链PFASs的环境风险已获广泛认可,但以其替代品形式大量涌现的短链PFASs及各类短链氟调聚物的环境危害性、环境行为和暴露风险则尚存很多的不确定性与研究空白,国际社会对于PFASs的风险控制范畴值得商榷.PFASs替代物质的结构和风险信息因商业秘密及市场竞争因素而缺乏公开性和透明度,多数含氟和非氟替代品的环境风险尚有待识别.总之,国际上对PFASs风险评估研究呈现出由以全氟辛烷磺酸类化合物(perfluorooctane sulfonic acid,PFOS)和全氟辛酸类化合物(perfluorooctanoic acid,PFOA)等为代表的长链全氟烷基酸(perfluoroalkyl acids,PFAAs)逐步扩展到短链PFAAs,再扩展到其他非PFAAs的PFASs物种的发展趋势.当前亟待解决及未来将持续研究关注的主要问题:关于短链PFASs的生物累积性和环境迁移性等关键环境危害性的评估指标和方法的优化,以及其环境释放和多介质环境归趋;中性PFASs的环境归趋及其作为短链PFAAs潜在前体物质的转化与贡献;未来PFASs含氟或非氟替代品的风险识别和评估.  相似文献   
97.
采用超高效液相色谱-质谱联用仪分析了四川省10个地区自来水中12种全氟化合物(perfluoroalkyl substances, PFASs)的含量,其中全氟化合物浓度水平最高的是宜宾地区,∑PFASs为41.2 ng·L~(-1),浓度水平最低的是绵阳地区,为4.17 ng·L~(-1).全氟辛烷羧酸(perfluroroocantanoic acid,PFOA)是四川地区自来水中主要的PFASs,占总全氟化合物的28%~89%(宜宾地区8.6%),其次为全氟己酸(perfluorohexanoate,PFHxA)、全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)和全氟壬酸(perfluorononanoate,PFNA),这表明自来水中的主要污染物为中短碳链(C≤10)的全氟化合物.另外,通过计算PFASs的危险商值(risk quotients, RQ),发现四川地区自来水中PFOA、PFOS、PFHxS、PFBS和PFHxA的风险商值均小于1,不会对当地居民带来直接的健康风险.  相似文献   
98.
全氟辛酸(PFOA)是一类典型的新型有机污染物,由于其独特的物理化学性质而广泛被生产和使用,对环境的影响越来越受到人们关注。近些年,国内外学者对全氟辛酸在环境、生物以及人类生活方面的影响开展了大量研究工作。文章介绍了全氟辛酸的性质及特征,概述了目前全氟辛酸在不同环境介质中的污染现状,并对全氟辛酸的检测方法和萃取技术进行了归纳、总结和展望。  相似文献   
99.
为了解漓江流域主要含氮化合物含量、来源,探究其对细菌群落结构组成的影响,于2018年1月采集水样同时检测水环境因子,利用主成分分析法对水样进行源解析,并基于高通量测序技术对水样的细菌群落结构特征进行分析,采用冗余分析方法探讨导致群落结构差异的主要驱动因素。结果表明,不同类型水体中的各形态氮含量存在差异,氮素主要来源于生活污水。流域中的三大优势菌门为变形菌门(Proteobacteria,50.16%)、拟杆菌门(Bacterodetes,18.51%)和厚壁菌门(Firmicutes,8.89%),影响细菌群落结构变化的主要驱动因素为氮污染,其中具有脱氮功能的菌门受影响较大。  相似文献   
100.
以小鼠为对象,对其注射汞化合物,然后检验其骨髓细胞微核和染色体,了解畸变情况。这项试验为汞及其化合物的安全生产、使用和卫生标准修订提供科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号