首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   4篇
综合类   5篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
稻田土壤固碳功能微生物群落结构和数量特征   总被引:10,自引:4,他引:6  
研究不同类型稻田土壤自养微生物数量和多样性差异及其影响因子,对全面认识稻田生态系统的固碳潜力及其机制具有重要意义.鉴于此,本文选取4种典型稻田土壤,通过室内培养实验对具备卡尔文循环途径碳同化微生物进行了研究.利用荧光定量PCR(qPCR)、克隆文库以及末端限制性长度多态性分析(T-RFLP)技术,研究了卡尔文循环关键酶(1,5二磷酸核酮糖羧化酶/加氧酶Rubis CO)的2种编码基因(cbbL和cbbM)的丰度和多样性.结果表明,与培养前相比,培养45 d后碳同化自养微生物数量有所增加,cbbL基因丰度比cbbM基因高3个数量级.不同稻田土壤中碳同化功能微生物优势种群存在差异,且这些微生物大多不能归类到已知的细菌类群中,部分可归类的与变形菌和放线菌有较高相似度.RDA分析结果显示土壤有机碳(SOC)、阳离子交换量(CEC)、pH、黏粒、粉粒和砂粒含量对碳同化功能微生物群落结构有显著影响.本文的研究结果对于理解微生物在碳循环过程中的作用具有一定的科学意义,也可以为稻田土壤肥力科学化管理和构建低碳农业提供科学依据.  相似文献   
2.
稻田土壤常处于频繁的干湿交替过程中,水分条件的改变不仅影响土壤理化性质,而且使土壤微生物群落结构和多样性发生改变,进而影响土壤有机碳矿化速率.然而,不同水分条件和土壤微生物生物量水平对土壤有机碳矿化过程的影响及其机制尚不明确.因此,本研究选取典型亚热带水稻土为研究对象,采用室内模拟培养试验,设置干湿交替和持续淹水这2个水分条件,并通过氯仿熏蒸方法减少土壤微生物生物量,从而获得微生物生物量碳含量高低两个水平的土壤,探讨水分条件和微生物生物量对水稻土有机碳矿化的影响机制.结果表明在培养前30 d,干湿交替处理处在不淹水状态,其CO2累积排放量显著低于持续淹水处理;30 d后干湿交替处理进入淹水状态,在高微生物生物量碳含量土壤中,其CO2累积排放量和持续淹水处理的差距逐渐减小,直至78 d无显著差异;在低微生物生物量碳含量土壤中,78 d时干湿交替处理的CO2累积排放量仍显著低于持续淹水处理.低微生物生物量碳含量土壤在培养初期(前20 d)受其高可溶性有机碳(DOC)含量影响,CO2排放速率可达高微生物生物量碳土壤的1.1~6.1倍;在培养后期(第45~78 d)土壤有机碳矿化速率达到稳定,高微生物生物量碳土壤的稳定矿化速率比低微生物生物量碳土壤高20%~30%.多元回归分析结果表明,土壤DOC含量的减少(ΔDOC)和Fe2+含量的增加(ΔFe2+)显著影响持续淹水条件下的CO2累积排放量的变化值(ΔCO2),但对干湿交替处理淹水阶段的CO2累积排放量却无影响.相关分析结果表明,高微生物生物量碳土壤的CO2日排放速率在干湿交替处理下与葡萄糖苷酶(BG)活性呈显著正相关,在持续淹水处理下与乙酰葡糖氨糖苷酶(NAG)和过氧化酶(PER)活性呈显著负相关;在低微生物生物量碳土壤中,CO2日排放速率在持续淹水处理下与NAG活性呈负相关,在干湿交替处理下与酶活性无关.综上,干湿交替处理的CO2累积排放量低于持续淹水处理,且该差异在低微生物生物量碳的土壤中显著;土壤微生物生物量大小会决定土壤有机碳稳定矿化速率水平;可溶性有机碳量和铁元素的还原量影响持续淹水条件下土壤的CO2排放量;土壤水分条件会影响CO2日排放速率及其关键生物酶因子.本研究为深入研究水稻土碳循环和固碳潜力提供数据和理论支持.  相似文献   
3.
温度是土壤酶活性的关键非生物影响因子,调控着土壤物质周转过程.为了探究温度变化对稻田土壤有机质周转及其关键胞外酶活性的影响,设计室内培养试验,分别在5、15、25和35℃下测定亚热带稻田土壤BG(β-1,4-葡萄糖苷酶)活性,探究温度对土壤胞外酶活性及其与碳氮转化过程的影响特征.结果表明:稻田土壤中w(DOC)(DOC为可利用态碳)、w(NH4+-N)和w(MBC)(MBC为微生物生物量碳)在5~25℃下随着培养时间的增加而降低.在第15天时BG活性达到306.57~437.75 nmol/(g·h),并随温度的增加表现为先增后减,在第3、75天时,25℃下BG活性为184.46~207.60 nmol/(g·h).土壤酶活性的Q10(温度敏感性)在15℃升至25℃时表现出正响应(Q10=1.5),而在5~15℃和25~35℃时Q10 < 1,表现为消除效应.土壤酶活性的变化是多因素共同影响的结果,温度作为关键影响因子,升温显著改变了土壤中w(DOC)、w(NH4+-N)、w(MBC)、w(MBN)(MBN为微生物生物量氮),进而影响土壤BG活性;土壤中w(MBC)对BG活性具有直接的显著负影响作用.研究显示,对参与稻田土壤碳转化BG酶活性的温度敏感性及其与土壤关键理化因子之间的耦合关系进行量化,有助于深入开展水稻土碳循环及其调控机制研究.   相似文献   
4.
长期施肥稻田土壤胞外酶活性对底物可利用性的响应特征   总被引:3,自引:2,他引:1  
土壤中碳(C)和氮(N)等底物的可利用性决定着微生物生长代谢,同时影响土壤胞外酶活性.为探讨土壤酶活性对土壤原有有机质变化的响应,本试验选取了长期定位试验田的4种施肥处理水稻土[无肥对照(CK)、单施化肥(NPK)、有机肥+化肥配施(OM)和秸秆还田+化肥配施(ST)],通过0、 4、 8和12个月的分段培养获取了具有不同可利用性C、N含量梯度的土壤,分析参与土壤碳氮转化过程的关键酶β-1,4-葡萄糖苷酶(BG)和β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)活性与可溶性有机碳(DOC)、铵态氮(NH~+_4-N)、土壤微生物生物量碳(MBC)和微生物生物量氮(MBN)含量的关系.结果表明,OM和ST处理对土壤中DOC含量的提高更显著(P0.01),是CK和NPK处理的2~3倍.NPK、OM和ST处理的MBC含量、BG和NAG酶活性高于CK处理.所有施肥处理中,随着可利用性底物(DOC和NH~+_4-N)含量的升高,BG和NAG活性整体呈稳定或下降趋势,MBC和MBN含量变化趋势与BG和NAG相同.施肥处理和培养时间以及二者的交互作用极显著影响(P0.01)土壤DOC、NH~+_4-N、MBC和MBN的含量.回归分析显示, OM处理MBC/MBN值与DOC/NH~+_4-N值之间正相关(P0.05);ST处理的ln(BG)/ln(NAG)值和DOC/NH~+_4-N值之间负相关(P0.01),这表明稻田土壤可利用性底物浓度是影响胞外酶活性的关键因子,且微生物量的碳氮计量比受控于土壤中底物的碳氮计量关系.该结果对深入研究稻田土壤中胞外酶活性变化规律,调节稻田土壤碳氮平衡,提高稻田土壤肥力具有一定指导意义.  相似文献   
5.
长期施肥对不同深度稻田土壤碳氮水解酶活性的影响特征   总被引:6,自引:2,他引:4  
与稻田土壤碳周转密切相关的酶活性是评价土壤肥力和肥料管理的重要指标.本研究选取秸秆还田(ST)、化肥(NPK)和不施肥(CK)的长期定位试验田,以10 cm的间距分段采集土壤剖面0~40 cm范围内的新鲜土样,利用96微孔酶标板荧光分析法,测定参与土壤碳氮转化过程关键酶β-1,4-葡萄糖苷酶(BG)和β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)活性,探讨不同施肥措施对不同深层土壤酶活的影响.结果表明,相比不施肥的土壤,施用化肥和秸秆土壤的BG酶活性分别提高了35%~118%和55%~342%;NAG酶活性分别提高了9%~30%和102%~484%.同时,随着土层深度的增加,土壤酶活性逐渐降低,0~20 cm深层土壤酶活性显著高于20~40 cm深层土壤.在不同施肥措施中秸秆还田可高程度影响稻田深层土壤.RDA分析表明土壤碳氮含量主要与0~20 cm的土壤酶活性有显著的正相关关系,与20~40 cm的土壤酶活性呈负相关关系.综上所述,随着土壤深度增加土壤微生物量和土壤酶活性显著降低.长期施肥显著提高了不同深层土壤生物量和土壤酶活性,其中秸秆还田作用尤为突出.因此,合理的秸杆还田有利于改善稻田深层土壤肥力,优化农田土壤养分循环,为作物生长提供良好的土壤环境.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号