排序方式: 共有32条查询结果,搜索用时 91 毫秒
1.
为减少秸秆碱处理的碱用量,提高秸秆的产气量,从产气量、XRD和FTIR等角度对碱预处理与后处理进行了初步比较,并对碱处理前后秸秆浸提液的理化性质以及秸秆的物质结构变化进行了分析.结果表明,秸秆经5%NaOH处理48 h后,细胞中的有机物大量溶出,COD、TN、NO3--N和NH4+-N分别从2 311.11、175.40、5.02和117.82 mg/L增至10 488.89、417.84、248.64和141.44 mg/L,表明碱处理不仅破坏木质纤维结构,还破坏核酸、氨基酸等含氮物的结构,将其中的氮以NO3--N和NH4+-N的形式释放出来;碱处理破坏了秸秆木质素结构,木质素含量降低,但纤维素的相对结品度增加,从0.592 3增加到0.662 2.厌氧消化的结果显示,秸秆预处理与后处理的产气能力相当,单位TS产气量分别为382.32 mL/g和375.84 mL/g,较对照分别提高了28.13%和25.96%,但后处理的碱用量仅为预处理的50%;厌氧发酵后对照中的木质素含量增加,而预处理和后处理均降低,后处理对木质素的破坏效果更好;厌氧微生物可破坏纤维素的结晶区,后处理对纤维素结晶区和无定形区 的破坏均强于预处理. 相似文献
2.
3.
4.
采用萃取——反萃取技术回收废水中的醋酸 总被引:7,自引:0,他引:7
用N235-正辛醇-磺化煤油混合溶剂为萃取剂,用35%氢氧化钠反萃取,对于6.8%的醋酸废水进行萃取试验。试验结果表明:混合溶剂对废水中的醋酸有较高的萃取率,反萃取效果为98.4%。采用萃取-反萃取工艺处理稀醋酸废水,不但有明显的环境效益,而且还可以回收醋酸制备醋酸钠,获得良好的经济效益。 相似文献
5.
Phosphorus fractions and its release in the sediments of Haihe River, China 总被引:5,自引:0,他引:5
下载免费PDF全文

The amounts and forms of phosphorus (P) in surface sediments of Haihe River, Tianjin, North China, were examined using a
sequential chemical extraction procedure. Five fractions of sedimentary P, including loosely sorbed P (NH4Cl-P), redox-sensitive P
(BD-P), metal oxide bound P (NaOH-P), calcium bound P (HCl-P), and residual P (Res-P) (organic and refractory P), were separately
quantified. The results indicated that the contents of di erent P fractions in the sediments varied greatly. The total P (TP) contents
ranged from 968 to 2017 mg/kg. Phosphorus contents in NH4Cl-P, BD-P, NaOH-P, and HCl-P ranged from 6.7 to 26.6 mg/kg, 54.5 to
90.2 mg/kg, 185.2 to 382.5 mg/kg, and 252.3 to 425.5 mg/kg, respectively, which represented 1.2%–3.2%, 7.7%–13%, 33.3%–48.9%,
and 36.2%–54.2% of the sedimentary inorganic P, respectively. For all the sediment samples, the rank order of P-fractions was Res-P
> HCl-P > NaOH-P > BD-P > NH4Cl-P. The highly positive relationship between the amounts of P released from the sediments and
those in the NH4Cl-P and BD-P fractions, indicated that NH4Cl-P and BD-P were the main fractions that can release P easily. 相似文献
6.
7.
为探明这种NaOH固态预处理对稻草产气量影响的内在机理,采用傅立叶变换红外光谱(FTIR)、氢质子核磁共振波谱(1HNMR)、凝胶渗透色谱(GPC)等方法,对NaOH固态处理前后稻草中木素结构的变化进行了多方位研究.结果表明,NaOH固态预处理使稻草中木素内部结构、木素-碳水化合物复合体的形态结构发生了明显的变化,使得纤维素从木素的包裹中释放出来,木素成分也由难降解的三维网状大分子转变成了易降解的直链结构的小分子,从而使得厌氧微生物能够接触到更多的纤维素并对其进行更有效的消化.这些木素形态结构的变化是导致稻草厌氧消化产气量提高的内在原因. 相似文献
8.
Combined alkaline and ultrasonic pretreatment of sludge before
aerobic digestion 总被引:3,自引:1,他引:2
下载免费PDF全文

Alkaline and ultrasonic sludge disintegration can both be used as pretreatments of waste activated sludge (WAS) for improving the subsequent anaerobic or aerobic digestion. The pretreatment has been carried out using different combination of these two methods in this study. The effect was evaluated based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the following aerobic digestion. For WAS samples with combined pretreatment, the released COD was in high level than those with ultrasonic or alkaline treatment. When combined with the same ultrasonic treatment, NaOH treatment resulted in more solubilization of WAS than Ca(OH)2. For combined NaOH and ultrasonic treatments with different sequences, the released COD were in the order: simultaneous treatment > ultrasonic treatment following NaOH treatment > NaOH treatment following ultrasonic treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7 500 kJ/kg dry solid) were beneficial for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with the optimium parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time. 相似文献
9.
Yubo Yan Xiaodong Liu Xiuyun Sun Fangbian M Lianjun Wang Jiansheng Li Jinyou Shen 《环境科学学报(英文版)》2014,26(5):970-980
Alkaline residue(AR) was found to be an efficient adsorbent for phosphate removal from wastewater. The kinetic and equilibrium of phosphate removal were investigated to evaluate the performance of modified alkaline residue. After treatment by NaOH(AR-NaOH), removal performance was significantly improved, while removal performance was almost completely lost after treatment by HCl(AR-HCl). The kinetics of the removal process by all adsorbents was well characterized by the pseudo second-order model. The Langmuir model exhibited the best correlation for AR-HCl, while AR was effectively described by Freundlich model. Both models were well fitted to AR-NaOH. The maximum adsorption capacities calculated from Langmuir equation were in following manner: AR-NaOH AR AR-HCl. Phosphate removal by alkaline residue was pH dependent process. Mechanisms for phosphate removal mainly involved adsorption and precipitation, varied with equilibrium pH of solution. For AR-HCl, the acid equilibrium pH( 6.0) was unfavorable for the formation of Ca-P precipitate, with adsorption as the key mechanism for phosphate removal. In contrast, for AR and ARNaOH, precipitation was the dominant mechanism for phosphate removal, due to the incrase on pH( 8.0) after phosphate removal. The results of both XRD and SEM analysis confirmed CaHPO4·2H2O formation after phosphate removal by AR and AR-NaOH. 相似文献
10.
异烟酸——吡唑啉酮光度法测定水中氰化物方法的探讨 总被引:2,自引:0,他引:2
在用异烟酸-吡唑啉酮光度法测定水中氰化物时,用氢氧化钠代替,N,N-二甲基甲酰胺作为溶剂,配制吡唑啉酮作试验,结果表明,改进法代替标准法是可行的,且改进后的显色剂较原显色剂稳定。 相似文献