首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   11篇
  综合类   18篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
北京地区不同尺度气溶胶中黑碳含量的观测研究   总被引:39,自引:4,他引:35       下载免费PDF全文
2003年7月、8月以及11月至2004年1月,在北京大学物理楼顶(北纬39 99°,东经116 31°)使用两台黑碳仪(Aethalometer)和一台TEOM1400a(TaperedElementOscillatingMicrobalance)来观测气溶胶.得到夏季黑碳的平均浓度为8 800μg·m-3,冬季为11 400μg·m-3.在冬季的观测中,在一台黑碳仪的进气口加上不同的切割头,分别得到了全部气溶胶(TSP)、PM10以及PM2 5中的黑碳质量浓度.结果表明,北京冬季的气溶胶中,90%的黑碳存在于PM10中,82 6%的黑碳存在于PM2 5中.比较PM10的浓度和PM10中黑碳的浓度可以看出,PM10中黑碳质量平均占5 11%.  相似文献
2.
大气气溶胶性质及其卫星遥感反演   总被引:11,自引:7,他引:4  
论述了大气气溶胶的物理性质(含微物理性质)、化学性质及光学性质,特别是黑碳气溶胶的物理、化学和光学性质及其对气候强迫作用和对人居环境的影响,同时对光化学形成的二次气溶胶进行了简要介绍。指出一般气溶胶具有负气候强迫效应,而黑碳气溶胶具有较强的正气候强迫效应。在分析影响气溶胶性质的各种因素时发现,气溶胶性质除受外在环境因素影响外,也受内在的自身因素的相互影响。对卫星遥感气溶胶的原理及其在卫星遥感反演中气溶胶多种性质间复杂的相互关系进行了论述,并针对未来气溶胶的研究提出建议。  相似文献
3.
天津夏季黑碳气溶胶及其吸收特性的观测研究   总被引:9,自引:2,他引:7       下载免费PDF全文
 利用天津城市边界层观测站2010年8月12日~9月18日期间的黑碳、污染物和气象梯度观测数据,分析天津市夏季黑碳气溶胶浓度的变化特征及其影响因子.结果表明, 观测期间,黑碳气溶胶浓度均值为6.309mg/L,占PM10质量浓度的4.17%,其吸收消光占气溶胶总体消光的10.23%.受人类活动和边界层结构影响,黑碳气溶胶浓度日变化呈双峰型,7:00达到峰值,14:00~16:00最小,20:00达到次高峰.黑碳气溶胶浓度随风速增加呈下降趋势,当风速超过4m/s时,浓度一般低于5mg/L,西风及西北风对天津城区黑碳气溶胶输送作用明显,其出现大于10 mg/L的高黑碳气溶胶事件概率为18.07%;逆温和大气稳定易造成黑碳气溶胶在近地层的堆积,形成高污染事件.  相似文献
4.
秸秆焚烧期的碳黑气溶胶观测及研究   总被引:8,自引:3,他引:5       下载免费PDF全文
2007年5~6月在合肥市郊3个站点连续实时监测碳黑气溶胶,研究其在秸秆焚烧期的变化特征和来源.正常时期碳黑气溶胶平均质量浓度约为4.85 μg/m3,而秸秆焚烧期其平均浓度约为 8.38 μg/m3,这说明秸秆焚烧是碳黑气溶胶的重要来源.同步监测的PM10与BC一致性较好,相关系数为0.74,一般情况下BC约占PM10的4.7%,而秸秆焚烧期BC/PM10的统计平均值较高,约为7.9%.比对2004年秸秆焚烧期BC浓度数据,证实了合肥市在实行农作物秸秆禁烧后,碳黑气溶胶的污染情况有较大好转.  相似文献
5.
辽宁地区大气黑碳气溶胶质量浓度在线连续观测   总被引:4,自引:1,他引:3  
利用2008年3月—2009年2月辽宁沈阳、大连、鞍山、抚顺和本溪ρ(黑碳)观测资料,分析了其变化特征及重要影响因子.结果表明,5个城市小时ρ(黑碳)的变幅较大,最小值出现在抚顺秋季的2008年9月23日00:00,ρ(黑碳)为0.14μgm3,最大值出现在本溪冬季的2008年11月11日08:00,ρ(黑碳)为64.52μgm3;本溪ρ(黑碳)日均值最高,为6.87μgm3,其次是沈阳、鞍山和抚顺,大连的ρ(黑碳)日均值最小,为3.18μgm3;ρ(黑碳)日变化有明显的峰值和谷值,最高值一般出现在06:00─09:00和17:00─19:00,低值出现在02:00─04:00和12:00─15:00;风速对ρ(黑碳)有重要影响,当风速<3.5 ms时,ρ(黑碳)随风速增大而减小,当风速>3.5 ms时,风速对ρ(黑碳)的影响不大;后向风轨迹较好地反映污染物在不同城市区域间的传输特征,在冬季沈阳以上风区域北部影响为主;ρ(黑碳)日均值变化和大气低层垂直温度梯度变化有较好的对应关系.  相似文献
6.
黑碳气溶胶研究现状   总被引:4,自引:0,他引:4  
简单介绍了黑碳气溶胶的来源、生成机理、一般性质及危害,概括介绍了国内外相关领域的研究现状,指出黑碳气溶胶在气候变化以及大气环境等领域中具有重大的研究价值和意义.  相似文献
7.
重庆市黑碳气溶胶特征及影响因素初探   总被引:4,自引:1,他引:3       下载免费PDF全文
为了解影响重庆市黑碳气溶胶(Black Carbon,BC)污染的主要气象因素及BC的主要来源,对2012年重庆市BC与主要气象因素及燃煤、机动车产生的SO2、NO x进行了相关性分析,并分析了24 h内BC浓度变化与车流量的关系.结果显示,2012年,重庆市BC年日均浓度为(5.9±2.7)μg·m-3,占PM2.5年日均浓度的7.2%,BC小时浓度较大值出现在6:00—10:00及20:00—23:00.气温和相对湿度对BC浓度的影响不大.影响BC浓度的主要气象因素为风速,风速为0.5~1.5 m·s-1时,BC浓度随着风速增大而减小;当风速超过2 m·s-1时,BC浓度随风速增大而增加.BC与SO2、NO x的相关系数分别为0.374和0.542(p0.01),表明重庆市BC与SO2、NO x来源相同,即燃煤和机动车尾气排放,且受机动车排放的影响更大.BC浓度24 h变化与车流量的关系表明,BC浓度日变化除了受到气象条件的影响外,还受机动车尤其是柴油重型车的影响,因此,需重点控制柴油机动车以控制重庆市区BC污染.  相似文献
8.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:3,自引:0,他引:3       下载免费PDF全文
 为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献
9.
2008~2012年上海黑碳浓度变化特征分析   总被引:3,自引:2,他引:1       下载免费PDF全文
采用上海市城市环境气象中心2008~2012年黑碳质量浓度小时平均资料,分析了上海市区黑碳质量浓度变化规律.结果表明,2008~2012年间上海黑碳平均质量浓度呈下降趋势,各年黑碳平均质量浓度从(4 045.3±3 375.4)ng·m-3降至(2 766.2±2 078.9)ng·m-3,观测期间的逐年变化率分别为2.3%、-6.5%、-18.7%和-12.1%.与其它大城市相比,黑碳平均质量浓度为中等偏低水平.从年平均变化看,11和12月的5年平均质量浓度最高,分别为5 426.6 ng·m-3和5 365.3ng·m-3,其次为1、6和10月,分别为4 402.5、3 763.3和3 412.7 ng·m-3.工作日和休息日的5年平均日变化均呈明显双峰结构,两峰分别出现在北京时间07:00~10:00和18:00~22:00,工作日第一峰高于第二峰,休息日则相反.5年间,工作日黑碳平均质量浓度较休息日高9%.此外,根据有效观测数据,通过回归整理,给出了一个5年平均黑碳质量浓度日变化的逐时经验函数,以方便估计和预测黑碳浓度水平.  相似文献
10.
南京北郊黑碳气溶胶污染特征及影响因素分析   总被引:2,自引:1,他引:1       下载免费PDF全文
肖思晗  于兴娜  朱彬  何镓祺 《环境科学》2016,37(9):3280-3289
利用2015年1~10月黑碳小时平均质量浓度、PM2.5浓度、污染气体及常规气象观测资料,对南京北郊黑碳气溶胶的时间序列演变特征、污染特征及其影响因子进行了分析.结果表明,观测期间南京北郊黑碳浓度均值为(2524±1754)ng·m-3.黑碳浓度具有明显的季节变化,冬季最高,平均值达到(3468±2455)ng·m-3,春季平均值最低,为(2142±1240)ng·m-3;其日变化也具有明显的双峰结构,峰值出现在上午07:00~08:00和夜间21:00~22:00.黑碳气溶胶与NOx的相关性较好,说明黑碳浓度受机动车尾气排放的影响较大;但观测期间ΔBC/ΔCO比值较低,表明生物质燃烧可能是黑碳气溶胶的又一个重要来源.黑碳浓度随风速增加呈下降趋势,所有季节中小于2000 ng·m-3的低黑碳浓度主要集中在正西风及相邻风向上,秋冬季大于6000 ng·m-3的高黑碳浓度则多出现在偏东风下.灰霾和重度霾天气下的黑碳浓度平均值呈较高水平,是非霾天气下的2~2.3倍.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号