首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  国内免费   1篇
环保管理   1篇
综合类   8篇
基础理论   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 78 毫秒
1
1.
前驱物结晶体升华成膜法制备TiO2薄膜及其光催化性研究   总被引:2,自引:0,他引:2  
采用“前驱物结晶体升华成膜法”工艺,使含钛前驱物结晶体草酸氧钛酸以升华的方式,均匀地在玻璃表面形成前驱物薄膜;经过热处理,制备出外观平整透明的玻璃基TiO2薄膜,其薄膜厚度为80-100nm,粒度≤50nm。初步研究了制备条件、薄膜性能和本工艺制备的玻璃基TiO2纳米薄膜对甲基对硫磷的光催化降解性能。  相似文献   
2.
从自上而下、自下而上两方面综述了石墨烯的制备方法,介绍了石墨烯基复合材料在气敏传感器、电化学传感器、光学与应力传感器等传感器领域的研究热点与进展,并比较了不同应用中的物理机制与理论解释,为石墨烯在装备技术领域的应用提供参考。最后提出了如何实现高质量石墨烯的量产,提高单层/单晶石墨烯的质量,如何实现石墨烯与其他材料的更好复合,以及石墨烯基材料性能提高的机制等将是今后石墨烯应用领域研究中重点。  相似文献   
3.
多层陶瓷电容器(MLCC)在使用过程中电参数会发生不同程度的退化甚至超差失效,降低了其可靠性。引起失效的原因可分为损耗性失效、过应力失效、内部缺陷失效以及外部缺陷失效四类。基于日常失效分析工作中遇到的多层陶瓷电容器失效问题,结合国内外文献调研资料,首先对多层陶瓷电容器制造工艺进行了分析,然后对烧结裂纹、分层及空洞三种内在缺陷以及使用过程中外部应力引起的装配裂纹、热应力裂纹、弯曲裂纹、银迁移等失效模式及其相应的微观失效机理展开了深入讨论,最后对上述失效提出了相应建议和预防措施。  相似文献   
4.
Monoclinic BiVO4 with multiple morphologies and/or porous structures were fabricated using the hydrothermal strategy. The materials were characterized by means of the XRD, Raman, TGA/DSC, SEM, XPS, and UV-Vis techniques. The photocatalytic activities of the BiVO4 materials were evaluated for the degradation of Methyl Orange under visible-light irradiation. It is observed that pH value and surfactant exerted a great effect on the morphology and pore structure of the BiVO4 product. Spherical BiVO4 with porous structures, flower-cluster-like BiVO4, and flower-bundle-like BiVO4 were generated hydrothermally at 100℃ with poly(vinyl pyrrolidone) (PVP) and urea (pH = 2) and at 160℃ with NaHCO3 (pH = 7 and 8), respectively. The PVP-derived BiVO4 showed much higher surface areas (5.0-8.4 m2/g) and narrower bandgap energies (2.45-2.49 eV). The best photocatalytic performance of the spherical BiVO4 material with a surface area of 8.4 m2/g was associated with its higher surface area, narrower bandgap energy, higher surface oxygen vacancy density, and unique porous architecture.  相似文献   
5.
仿生SiC陶瓷材料是一种新兴的环境友好材料,因其具有密度低、强度高、耐腐蚀、耐磨损、抗氧化和生物相容性好等优点,在机械、化工、催化、生物医学等领域都有着广阔的应用前景。就仿生SiC陶瓷材料的多种制备工艺和其机械性能、热性能、电性能、生物相容性等进行了综述,并对其存在的问题进行了分析,对其发展趋势进行了展望。  相似文献   
6.
Three-dimensional (3D) porous structures facilitating cell attachment, growth, and proliferation is critical to tissue engineering applications. Traditional solid freeform fabrication (SFF) methods have limited capabilities in the fabrication of high resolution micro-scale features to implement advanced biomedical functions. In this work, we present a hybrid scaffold fabrication approach by integrating electrohydrodynamic (EHD) printing technology with extrusion deposition together to fabricate hierarchical 3D scaffolds with well controlled structures at both macro and micro scale. We developed a hybrid fabrication platform and a robust fabrication process to achieve 3D hierarchical structures. The melting extrusion by pneumatic pressure was used to fabricate 3D scaffolds with filaments dimension of hundreds of microns using thermoplastic biopolymer polycaprolactone (PCL). An electrohydrodynamic (EHD) melt jet plotting process was developed to fabricate micro-scale features on the scaffolds with sub-10 μm resolution, which has great potential in advanced biomedical applications, such as cell alignment and cell guidance.  相似文献   
7.
化学机械研磨废水产生量大但总体污染物浓度不高,回用潜力巨大,其处理及回用技术是芯片制造企业的研究重点。文章介绍了化学机械研磨废水来源、水质特征,概述并对比分析了常用的化学机械研磨废水处理和回用技术及其应用现状和发展趋势,并指出以膜滤或电化学处理为主的处理及回用技术具有良好的运用前景。  相似文献   
8.
仿生超疏水金属表面应用研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
季梅 《装备环境工程》2017,14(10):98-104
叙述了浸润性理论基础,较全面地介绍了超疏水金属表面在许多基础研究和工业应用领域所具有的重要理论意义和广阔的应用前景,包括自清洁、流体减阻、水上微型运输器、抗凝露、防冰覆、腐蚀与防护、液体传输、油水分离、生物污损及防除、海洋污损及防除等,并且提出超疏水金属表面的耐蚀机理,为拓展仿生超疏水金属材料在工业领域及民用部门的工程应用背景提供可以借鉴的依据。  相似文献   
9.
分析了镁合金的塑性变形特点及应用前景 ,阐述了镁合金塑性加工研究现状及在材料、性能和加工制造方面的发展方向 ,分析了镁合金挤压、锻造、冲压、胀形等变形特点及工艺关键。讨论了镁合金的各种加工性能和环境影响 ,总结了镁合金塑性加工技术的最新进展  相似文献   
10.
以国家节水企业评价标准与其他类似节水指标为指导,结合芯片制造产业特征与台湾同类企业评价标准,总结提出针对芯片制造产业的节水评价指标.设计指标从总体用水,主要生产单元以及主要辅助单元三方面考察企业用水情况,其中主要生产单元用水作为重要考察对象,包括纯水制造单元和芯片制造线的清洗水回收.运用该指标对现有浦东典型企业用水状况...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号