首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
综合类   5篇
基础理论   1篇
评价与监测   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
传统方法使用固定的波长吸收指数来估算地壳元素或棕碳吸光,但该方法只能处理仅存在两种组分的情形(黑碳/棕碳,或黑碳/地壳元素)的吸光贡献,存在较大不确定性.为此,本文提出一种新的方法,利用武汉在线观测数据(2021年2、3、8、9月),采用铁作为地壳元素的示踪物,利用最小相关系数法(MRS)得出地壳元素的吸光贡献,在扣除地壳元素吸光之后,再得到黑碳吸光增强系数(Eabs).结果显示观测期间370nm波段地壳元素吸光贡献均值为12.3%,月均值范围5.7%~15.5%,且波长吸收指数与铁的浓度正相关,表明地壳元素吸光贡献不可忽视.地壳元素吸光贡献呈现出显著的季节特征,呈现出冬季低,春季高的特点.地壳元素吸光的分离前后计算的Eabs存在一定的差异,受到了黑碳和铁的相关性的影响.观测期间扣除地壳元素吸光后,Eabs均值为1.43±0.53,在季节性上呈现春夏高,秋冬低的特性,春季较高Eabs值与春季黑碳较高的老化程度有关.Eabs对无机盐和有机物的含量存在正的依赖关系,证明了这些包裹物质对吸光增强的影响.  相似文献   
2.
本研究运用最小相关系数法(MRS),使用元素碳(EC)作为示踪物,得到一次排放的质量吸光效率(MAEp),结合黑碳仪(AE33)和有机碳/元素碳分析仪获得实测的质量吸光效率MAEt,进而通过MAEt/MAEp的比值得出吸光增强系数(Eabs).采样站点位于广州市城区暨南大学大气超级监测站,采样时间涵盖了干季(2019年1月26日~3月31日)和湿季(2018年5月1日~7月31日).对广州市城区的黑碳气溶胶及其光学特征进行分析,EC在干季的平均浓度(1.93±1.38)μgC/m3高于湿季(1.46±0.75)μgC/m3,而Eabs520在干季的均值(1.26±0.34)低于湿季(1.63±0.55).Eabs520在干湿季的日变化差异明显,但有机碳(OC)、EC、OC/EC、波长指数(AAE470-660)均为干季高于湿季.分析发现气溶胶负载补偿参数k值与Eabs520在湿季呈现出较好的相关性,而在干季相关性较差,可能与生物质燃烧的影响有关;探讨了O3、NO2和SOC/OC对Eabs520的影响,在干季O3Eabs520的相关性较差(R2=0.21),在湿季较好(R2=0.46),SOC/OC却展现出了相反的关系,而NO2在干季和湿季与Eabs520的相关性都较差(R2=0.01),并发现温度对Eabs520存在一定的影响.通过后向轨迹聚类分析发现,长距离传输气团的的黑碳Eabs520值较高.  相似文献   
3.
大气棕碳(BrC)是对大气颗粒物中具有吸光能力的一类有机物的总称,其对空气能见度及气候系统均有重要影响.自2021年3月至2022年2月底于南京北郊利用黑碳仪测定了气溶胶中BrC的光吸收系数,利用最小相关性法分别定量一次(BrCpri)和二次棕碳(BrCsec)贡献,结合后向轨迹、潜在来源和日均变化,分析季节变化特征.结果表明,观测期间BrC的平均光吸收系数(370 nm)为(7.76±7.17)Mm-1,对于总气溶胶光吸收贡献率为(22.0±8.8)%.不同波长下棕碳吸光系数在四季呈现U字形变化,即春季和冬季高,夏季和秋季低.BrCpri和BrCsec(370 nm)全年光吸收贡献分别为(62.9±21.4)%和(37.1±21.4)%;前者在四季均占主导,但随着波长增加,BrCsec的贡献逐渐增加并最终占主导(如在660 nm时).除冬季以外,BrC在其他季节受到来自海上气团的显著影响,而冬季受当地及周边地区排放影响更为显著.交通排放在春、夏和秋季对一...  相似文献   
4.
本研究运用最小相关系数法(MRS),使用元素碳(EC)作为示踪物,得到一次排放的质量吸光效率(MAEp),结合黑碳仪(AE33)和有机碳/元素碳分析仪获得实测的质量吸光效率MAEt,进而通过MAEt/MAEp的比值得出吸光增强系数(Eabs).采样站点位于广州市城区暨南大学大气超级监测站,采样时间涵盖了干季(2019年1月26日~3月31日)和湿季(2018年5月1日~7月31日).对广州市城区的黑碳气溶胶及其光学特征进行分析,EC在干季的平均浓度(1.93±1.38)μgC/m3高于湿季(1.46±0.75)μgC/m3,而Eabs520在干季的均值(1.26±0.34)低于湿季(1.63±0.55).Eabs520在干湿季的日变化差异明显,但有机碳(OC)、EC、OC/EC、波长指数(AAE470-660)均为干季高于湿季.分析发现气溶胶负载补偿参数k值与Eabs520在湿季呈现出较好的相关性,而在干季相关性较差,可能与生物质燃烧的影响有关;探讨了O3、NO2和SOC/OC对Eabs520的影响,在干季O3Eabs520的相关性较差(R2=0.21),在湿季较好(R2=0.46),SOC/OC却展现出了相反的关系,而NO2在干季和湿季与Eabs520的相关性都较差(R2=0.01),并发现温度对Eabs520存在一定的影响.通过后向轨迹聚类分析发现,长距离传输气团的的黑碳Eabs520值较高.  相似文献   
5.
为研究中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源,于2018年12月5日—2019年1月30日分别在天津(TJ)、上海(SH)和青岛(QD)同步采集PM2.5样品。结果表明,天津、上海和青岛PM2.5的平均浓度分别为(116.96±66.93)、(31.21±25.62)、(74.93±54.60)μg·m-3,OC和EC的空间分布均为天津(18.69±7.95)μg·m-3和(4.98±2.08)μg·m-3>青岛(16.45±8.94)μg·m-3和(2.01±1.04)μg·m-3>上海(7.28±3.11)μg·m-3和(1.05±1.25)μg·m-3。3个站点的OC和EC均呈现较好的相关性,表明OC和EC具有相似的来源;OC/EC比值范围在2.37—7.53、5.47—46.41和4.77—13.36之间,证明各采样点均存在二次有机碳(SOC)的生成;采用最小R2法(MRS)估算SOC浓度,得到3个采样点SOC的平均质量浓度为(5.09±4.68)、(3.90±1.65)、(4.21±4.31)μg·m-3,分别占OC总量的27.2%、55.8%和19.5%,其中上海的SOC在OC中的占比最大,说明上海二次有机碳污染较为严重,这主要归因于冬季严重污染源排放和有利的二次转化气象条件,而天津和青岛的碳组分主要来自污染源的直接排放。主成分分析(PCA)结果发现,天津PM2.5中碳组分主要来源于道路尘、生物质燃烧和机动车尾气,上海PM2.5中碳组分主要来源于生物质燃烧、道路扬尘和机动车尾气。青岛PM2.5中碳组分主要来源于道路扬尘、机动车尾气。后向轨迹聚类分析表明,来自西北方向的气团对天津的影响较大,PM2.5和碳组分的浓度值最大;而对上海而言,主要受北方气溶胶经过海面又传输回上海的气团的影响;青岛站点主要受华北地区污染物和本地排放源的影响。  相似文献   
6.
利用在线高分辨率仪器对2014-2018年南京市PM2.5中有机碳(OC)、元素碳(EC)进行了连续监测,结果表明:离线分析法与在线分析法对OC、EC的测定结果具有很好的线性相关性,离线分析的EC、OC浓度高于在线自动监测值;2014-2018年南京OC与EC的平均质量浓度分别为(6. 38±3. 91)μg/m^3和(3. 12±1. 76)μg/m^3,整体呈下降趋势,冬季OC与EC均较高,夏季两者质量浓度较低。OC和EC均呈现夜间高、白天低的日变化规律,OC与EC第一个峰值均出现在08:00左右,OC第二个峰值出现在20:00前后;夏季OC与EC相关性最低,冬季最高,NO2、CO与OC、EC的相关性总体高于SO2,表明燃料燃烧对碳气溶胶有一定贡献,但没有交通源的贡献显著,夏季O3与OC呈现一定程度的正相关性。利用最小相关系数法(MRS)计算大气OC中一次有机碳(POC)和二次有机碳(SOC),结果显示OC中以POC为主,但SOC呈逐年上升趋势,2018年SOC质量浓度达1. 96μg/m3,在OC中占比达31. 9%,后续颗粒物污染治理的重点可能应关注VOCs。  相似文献   
7.
嘉善冬季碳质气溶胶变化特征及其来源解析   总被引:3,自引:3,他引:0  
利用2018年冬季(2018年12月至2019年2月)和2019年冬季(2019年12月至2020年2月)嘉兴市嘉善县善西超级站有机碳(OC)、元素碳(EC)及细颗粒物(PM2.5)浓度数据分析嘉兴嘉善地区碳质气溶胶变化特征及潜在来源区域.结果表明,2018年和2019年冬季OC浓度分别为6.90μg·m-3和5.63μg·m-3,EC浓度分别为2.47μg·m-3和1.57μg·m-3,2019年冬季OC和EC浓度较2018年冬季降幅分别为18.4%和36.4%.利用Minimum R-squared (MRS)方法计算得到2018年和2019年冬季二次有机碳(SOC)分别为1.49μg·m-3和1.97μg·m-3,一次有机碳(POC)浓度分别为5.41μg·m-3和3.66μg·m-3,SOC在OC中占比呈上升趋势,上升31.1个百分点,POC占比变化则相反.值得注意的是,随着PM2.5浓度升高,OC和EC浓度呈上升趋势,最高上升幅度分别为474.7%和408.2%,但在PM2.5中占比却呈下降趋势,OC和EC占比下降幅度分别为6.5个百分点和2.4个百分点;POC对PM2.5的贡献波动不大,仅在150μg·m-3以上有明显降低趋势,SOC对PM2.5的贡献先下降后上升.嘉兴OC和EC潜在源区主要为苏南地区、安徽东南部和浙江北部,且2019年冬季和2018年冬季相比,OC和EC的主要潜在源区贡献浓度分别下降2μg·m-3和6μg·m-3以上,且潜在源区高值区域变小.疫情前受机动车尾气排放和燃煤共同影响,春节和居家隔离期间,因交通管制等原因,机动车排放量减少,燃煤贡献占比上升.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号