首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
废物处理   4篇
环保管理   2篇
综合类   1篇
基础理论   3篇
污染及防治   5篇
社会与环境   2篇
  2022年   1篇
  2021年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  1993年   1篇
  1984年   2篇
排序方式: 共有17条查询结果,搜索用时 216 毫秒
1.
Applying manure compost not only results in zinc accumulation in the soil but also causes an increase in zinc mobility and enhances zinc leaching. In this study, the physical and chemical characteristics of zinc, zinc profiles, and zinc balance were investigated to characterise the fate of zinc in fields where the quality and amount of pig manure compost applied have been known for 13 years. Moreover, we determined zinc fractionation in both 0.1 mol L?1HCl-soluble (mobile) and -insoluble (immobile) fractions. Adsorption of zinc in the soil was enhanced with increasing total carbon content following the application of pig manure compost. The 159.6 mg ha?1 year?1manure applied plot (triplicate) exceeded the Japanese regulatory level after only 6 years of applying pig manure compost, whereas the 53.2 mg ha?1 year?1 manure applied plot (standard) reached the regulatory level after 13 years. The zinc loads in the plots were 17.0 and 5.6 kg ha?1 year?1, respectively. However, 5.9 % and 17.2 % of the zinc loaded in the standard and the triplicate pig manure compost applied plots, respectively, were estimated to be lost from the plough layer. Based on the vertical distribution of mobile and immobile zinc content, a higher rate of applied manure compost caused an increase in the mobile zinc fraction to a depth of 40 cm. Although the adsorption capacity of zinc was enhanced following the application of pig manure compost, a greater amount of mobile zinc could move downward through the manure amended soil than through non manure-amended soil.  相似文献   
2.
To learn more about the biodegradation of potassium bromate, the decomposition of bromate in various tissues of rats was studied. Bromate was degraded very slowly in human saliva and plasma of rat. However, nearly all tissue homogenates and red blood cells could degrade bromate by a mechanism which exhibited some stability to heat. Furthermore, it was suggested that the bromate degradation active component in the supernatant fraction of a liver homogenate was in part glutathione.  相似文献   
3.
This study investigated the production of d-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5?min was determined. The steam-exploded sugarcane bagasse was hydrolyzed using cellulase (Meicelase) and then the hydrolyzate was subjected to fermentation substrate. By enzymatic saccharification using Meicelase, the highest recovery of glucose from raw bagasse, 73.7?%, was obtained at a steam pressure of 20?atm. For extracted residue with water after steam explosion, the glucose recovery increased up to 94.9?% at a steam pressure of 20?atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20?atm), d-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of d-lactic acid obtained from the glucose concentration was 66.6?% for the hydrolyzate of steam-exploded bagasse without washing with water and 90.0?% for that derived from the extracted residue with water after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.  相似文献   
4.
Journal of Material Cycles and Waste Management - This paper presents whether some minerals in waste concrete and ferronickel slag are available for hydroponics instead of commercial fertilizer....  相似文献   
5.
Dioxins and their surrogates were continuously monitored during the startup of two municipal waste in cinerators (MWIs). The surrogates studied included low-volatility organohalogen compounds (LVOH) sampled by online systems, as well as chlorobenzenes (CBs) and chlorophenols (CPs). The changes in levels of LVOH, CBs, and CPs corresponded well with the trend of the toxicity equivalent quantity (TEQ). The correlation of LVOH with TEQ was fairly good, whereas that of CBs and CPs with TEQ was not consistent. The correlation of LVOH with TEQ involved a memory effect related to the delayed emission of less volatile compounds. The isomer analysis of the dioxins present under startup conditions showed evidence of the memory effect, i.e., highly chlorinated isomers were emitted slowly, whereas low-chlorinated isomers and LVOH decreased rapidly as the temperature rose. LVOH cannot act as a perfect dioxin surrogate, but it can give a versatile, quick, and comprehensive warning of the presence of organohalogen compounds because it is free from the memory effect and covers many kinds of organohalogen compounds, including dioxins.  相似文献   
6.
Five years after the 1997 Nakhodka oil spill in the Sea of Japan, seven bacterial strains capable of utilizing the heavy oil spilled from the Nakhodka Russian oil tanker were isolated from three coastal areas (namely Katano Seashore of Fukui Prefecture, Osawa and Atake seashores of Ishikawa Prefecture) and the Nakhodka Russian oil tanker after a 5-year bioremediation process. All bacterial strains isolated could utilize long-chain-length alkanes efficiently, but not aromatic, and all of them were able to grow well on heavy oil. Using 16S rDNA sequencing, most of the strains were affiliated to Pseudomonas aeruginosa. Comparing between the year 1997 (at the beginning of bioremediation process) and the year 2001 (after 5 years of bioremediation), there was no significant change in morphology and size of hydrocarbon-degrading bacteria during the 5-year bioremediation. Scanning and transmission electron microscopic observations revealed that a large number of hydrocarbon-degrading bacteria still existed in the sites consisting of a variety of morphological forms of bacteria, such as coccus (Streptococcus and Staphylococcus) and bacillus (Streptobacillus). On the application of bioremediation processes on the laboratory-scale, laboratory microcosm experiments (containing seawater, beach sand, and heavy oil) under aerobic condition by two different treatments (i.e., placed the inside building and the outside building) were established for bioremediation of heavy oil to investigate the significance of the role of hydrocarbon-degrading bacteria on them. There was no significant bacterial activity differentiation in the two treatments, and removal of heavy oil by hydrocarbon-degrading bacteria in the outside building was slightly greater than that in the inside building. The values of pH, Eh, EC, and dissolved oxygen (DO) in two treatments indicated that the bioremediation process took place under aerobic conditions (DO: 1-6 mg/l; Eh: 12-300 mV) and neutral-alkaline conditions (pH 6.4-8) with NaCl concentrations of 3-15% (ECs of 45-200 mS/cm).  相似文献   
7.
Buckwheat tea waste (BWTW) and barley tea waste (BTW), by-products of the beverage industry, are alternative carbohydrate sources for ethanol production. In this study, optimal enzyme loading for enzymatic saccharification of BWTW and BTW was determined, and simultaneous saccharification and fermentation (SSF) was performed by Saccharomyces cerevisiae and Mucor indicus to produce ethanol. Optimal enzyme loading for enzymatic saccharification of 2?% w/v BWTW and BTW was 0.5?% (weight of enzyme/weight of tea wastes) for BWTW and 0.1?% for BTW. Ethanol production from BWTW by S. cerevisiae and M. indicus after 48?h of SSF was 49.9/100?g of BWTW and 47.9/100?g of BWTW, respectively, with 0.5?% enzyme loading. Ethanol production from BTW by S. cerevisiae and M. indicus after 48?h of SSF was 20.5/100?g of BTW and 21.6/100?g of BTW, corresponding to 62 and 66?% of the theoretical yield based on starch content, respectively, with 0.1?% of enzyme loading. Furthermore, S. cerevisiae produced 76?% of the theoretical yield based on the total glucose from starch in BWTW and BTW when a mixture of BWTW and BTW was used as a substrate, with 0.2?% enzyme loading and no additional nitrogen or mineral sources.  相似文献   
8.
Potassium Bromate was administered orally to rats and its fate in the body was studied. The bromate was rapidly absorbed from the digestive tract and was partly excreted in the urine within two hours of administration. No bromate was detected in body organs or in the blood 24 hours after dosing. Excretion of bromate into the urine was proportional to the dose, except that at 2.5mg/kg or less no excretion was observed. The administration of bromate increased the bromide concentration in various organs and in urine.  相似文献   
9.
10.
Some unavoidable drawbacks of traditional technologies have made phytoremediation a promising alternative for removal of arsenic from contaminated soil and water. In the present study, the potential of an aquatic macrophyte Spirodela polyrhiza L. for phytofiltration of arsenic, and the mechanism of the arsenic uptake were investigated. The S. polyrhiza L. were grown in three test concentrations of arsenate and dimethylarsinic acid (DMAA) (i.e. 1.0, 2.0 and 4.0microM) with 0 (control), 100 or 500microM of phosphate. One control treatment was also set for each test concentrations of arsenic. The PO(4)(3-) concentration in control treatment was 0.02microM. When S. polyrhiza L. was cultivated hydroponically for 6d in culture solution containing 0.02microM phosphate and 4.0microM arsenate or DMAA, the arsenic uptake was 0.353+/-0.003micromolg(-1) and 7.65+/-0.27nmolg(-1), respectively. Arsenic uptake into S. polyrhiza L. was negatively (p<0.05) correlated with phosphate uptake when arsenate was applied to the culture solutions owing to similar in the sorption mechanism between AsO(4)(3-) and PO(4)(3-), and positively (p<0.05) correlated with iron uptake due to adsorption of AsO(4)(3-) onto iron oxides. Thus, the S. polyrhiza L. accumulates arsenic by physico-chemical adsorption and via the phosphate uptake pathway when arsenate was added to the solutions. These results indicate that S. polyrhiza L. would be a good arsenic phytofiltrator. In contrast, DMAA accumulation into S. polyrhiza L. was neither affected by the phosphate concentration in the culture nor correlated (p>0.05) with iron accumulation in plant tissues, which indicates that S. polyrhiza L. uses different mechanisms for DMAA uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号