首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
废物处理   1篇
环保管理   2篇
基础理论   1篇
污染及防治   5篇
评价与监测   1篇
  2015年   1篇
  2007年   1篇
  2004年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The main aim of this study was to determine how the application of a mulch cover (a mixture of household biocompost and woodchips) onto heavy metal-polluted forest soil affects (i) long-term survival and growth of planted dwarf shrubs and tree seedlings and (ii) natural revegetation. Native woody plants (Pinus sylvestris, Betula pubescens, Empetrum nigrum, and Arctostaphylos uva-ursi) were planted in mulch pockets on mulch-covered and uncovered plots in summer 1996 in a highly polluted Scots pine stand in southwest Finland. Spreading a mulch layer on the soil surface was essential for the recolonization of natural vegetation and increased dwarf shrub survival, partly through protection against drought. Despite initial mortality, transplant establishment was relatively successful during the following 10 yr. Tree species had higher survival rates, but the dwarf shrubs covered a larger area of the soil surface during the experiment. Especially E. nigrum and P. sylvestris proved to be suitable for revegetating heavy metal-polluted and degraded forests. Natural recolonization of pioneer species (e.g., Epilobium angustifolium, Taraxacum coll., and grasses) and tree seedlings (P. sylvestris, Betula sp., and Salix sp.) was strongly enhanced on the mulched plots, whereas there was no natural vegetation on the untreated plots. These results indicate that a heavy metal-polluted site can be ecologically remediated without having to remove the soil. Household compost and woodchips are low-cost mulching materials that are suitable for restoring heavy metal-polluted soil.  相似文献   
2.
Since 1994 the nickel-processing plant at the Cu-Ni smelter at Harjavalta, south-west Finland, has emitted considerable amounts of NH(3) into the atmosphere. The effects of NH(3) emissions on nitrogen and sulphur deposition in throughfall and the foliar nutrient status were investigated in a Scots pine stand at 0.5 km distance. Bulk deposition, stand throughfall and percolation water (20 cm depth) samples were collected at 4-week intervals during 1992-1998. pH and the Ca, Mg, K, NH(4) and SO(4) concentrations were determined on the samples. NH(3) emissions have strongly increased the scavenging of SO(2) from the air in the pine stand, and the increased levels of N and S deposition were clearly evident as increased foliar N and S concentrations and larger needle size. The increased input of SO(4) into the forest floor was not associated with an increase in the leaching of Ca and Mg from the surface soil layers.  相似文献   
3.
Four experiments were established (1992) in Scots pine stands at distances of 0.5, 2, 4 and 8 km along a line running to the SE of the Cu-Ni smelter at Harjavalta, SW Finland, in order to investigate the effects of Cu and Ni emissions on macronutrient availability and estimates of cation exchange capacity (CEC) and base saturation (BS). The accumulation of Cu and Ni (total, exchangeable) in forest soil close to the smelter has resulted in a deficit of base cations (exchangeable Ca, Mg, K and BS) in the organic layer caused by inhibition of mineralisation and the displacement of base cations from cation exchange sites by Cu and Ni cations. No signs of soil acidification were found in the topmost layers of the soil measured as a change in pH, exchangeable acidity and Al. The determination of CEC by the summation method in heavy-metal polluted forest soils is not recommended unless heavy metal cations are also included in the calculations.  相似文献   
4.
Five methods for aluminium fractionation used in different laboratories in Norway and Finland were compared using six control, 75 soil water and 10 lake water samples. Different fractionation principles [cation exchange, formation of the Pyrocatechol Violet (PCV) or quinolin-8-ol (oxine) complex], types of cation exchanger [Amberlite (Na/H) or Bond Elut (H)], reaction time (from 2.3 s), flow systems (flow injection analysis or segmented flow) and determination principles (molecular absorption spectrometry or ICP-AES) were tested. Determination of the 'labile' fraction was strongly dependent on the method used and the largest differences were observed between the ICP-AES method with cation exchange (Bond Elut H form) and the 'quickly reacting' method (oxine, 2.3 s). Different flow systems, both using cation exchange and determination of the PCV complex but with different reaction times and an extra acidification step, resulted in large differences in the 'reactive' and 'non-labile' fractions determined. However, the determination of the labile fraction gave similar results with both these methods. The two different types of cation exchanger used (with and without pH buffering and with different counter ions) in the ICP-AES methods resulted in differences, mainly because of a smaller 'non-labile' fraction in the non-buffered system. The two flow injection systems (oxine and PCV complexation) showed common trends, which may be connected with the short reaction times used. Comparison with theoretical equilibrium calculations using the model ALCHEMI suggested that the best correlation for the determination of the 'labile' fraction were obtained with the ICP-AES method with an Amberlite column.  相似文献   
5.
Small-scale element distribution in soil-plant-systems in patches of Empetrum nigrum (microsites) at heavy metal contaminated sites located 0.5 and 4 km from the copper-nickel smelter at Harjavalta was investigated. The Cu concentrations of E. nigrum varied between 12 and 2300 mg/kg dw and showed increasing accumulation with increasing tissue age. Stems contained more Cu than leaves of the same age. The distribution pattern of Ni and Pb in the above-ground biomass followed that of Cu. Roots contained relatively low concentrations of all airborne heavy metals. In the soil, the highest concentrations of total Cu occurred in the humus (Oh) layer: on average 49,450 mg/kg dw at 0.5 km distance and 12,025 mg/kg dw at 4.0 km. Despite the extremely high Cu concentrations in the topsoil, the concentrations in the mineral soil below a depth of 10 cm did not exceed 2.5 mg/kg dw at any site.  相似文献   
6.
Bulk precipitation and stand throughfall were collected during 1992-96 at distances of 0.5, 4 and 8 km from the Harjavalta Cu-Ni smelter, southwestern Finland. The amounts of heavy metals (Cu, Ni, Zn, Fe) and mineral nutrients in bulk precipitation and throughfall were highest at 0.5 km. Although the canopy coverage was low at 0.5 km, the amounts of heavy metals intercepted by the canopy were extremely high. The proportion of foliar leaching relative to the wash-off of dry deposition from the needle surfaces decreased on moving towards the smelter for all elements, except for K. The high rate of K leaching from the needle tissues close to the smelter demonstrated that the K throughfall flux has been greatly altered by the heavy pollution load.  相似文献   
7.
8.
Soil acidity parameters (pH, basesaturation, exchangeable Al) in the organic and mineralsoil layers and in soil water (pH, dissolved organiccarbon, total Al, Al3+ and molar Ca/Al ratios) insix Norway spruce stands in different parts of Finlandwere compared. An attempt was also made to relate thedegree of defoliation in the tree stand to N and Sdeposition and soil parameters. No relationship was foundbetween soil acidity parameters and defoliation in thesix stands. Defoliation was positively correlated withstand age and the C/N ratio of the organic layer, andnegatively with the cation exchange capacity. The plotlocated on a so-called sulphate soil on the west coast ofFinland had very low soil pH values, and extremely highAl and SO4 2- concentrations and molar Ca/Alratios of well below 1.0 in soil water. Despite the highnatural acidity in the soil on this plot, defoliation inthe spruce stand was the lowest (mean 8.6%) of all sixplots. The results of this study indicate that soilacidity is not a major factor affecting stand conditionin these spruce stands, and that the variation in soilacidity parameters is closely related to climatic factorsand natural soil formation processes.  相似文献   
9.
Understorey vegetation of Scots pine forests was studied along a 8-km transect running SE from a Cu-Ni smelter at Harjavalta, SW Finland. Long-term accumulation of heavy metals and sulphur in the forest ecosystem has drastically changed plant communities. Vegetation was almost absent up to a distance of 0.5 km from the smelter. The total coverage and the number of plant species increased with increasing distance from the smelter. Ordination by global non-metric multidimensional scaling (GNMDS) indicated that the floristic composition was differentiated in response to the pollution level. The main compositional gradient of GNMDS was correlated with the heavy metal concentrations in the organic soil layer and with the size of the overstorey trees. Vascular plants were more pollution-resistant than ground lichens, whereas mosses were the most sensitive plant group. In addition to heavy metals, nutrient imbalances and the considerably reduced water-holding capacity of the surface soil also restrict plant recolonisation on the degraded sites.  相似文献   
10.
Bioremediation of a heavy metal-polluted soil was investigated in a 3-yr field experiment by adding mulch to a polluted forest floor. The mulch consisted of a mixture of compost and woodchips. The remediation treatment decreased the toxicity of the soil solution to bacteria as determined by the [3H]-thymidine incorporation technique, that is, by measuring the growth rate of soil bacteria extracted from unpolluted humus after exposing them to soil solution containing heavy metals from the experimental plots. Canonical correlation analysis was performed in order to identify the chemical and microbiological changes in the soil. The pH of the mulched organic layer increased by one unit. The concentration of complexed Cu increased and that of free Cu2+ decreased in the soil solution from the mulch treatment. According to basal respiration and litter decomposition, microbial activity increased during the 3 yr following the remediation treatment. The [3H]-thymidine incorporation technique was also used to study the growth rate and tolerance of bacteria to Cu. The bacterial growth rate increased and the Cu tolerance decreased on the treated plots. The structure of the microbial community, as determined by phospholipid fatty acid (PLFA) analysis, remained unchanged. The results indicate that remediation of the polluted soil had occurred, and that adding a mulch to the forest floor is a suitable method for remediating heavy metal-polluted soil.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号