首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   3篇
环保管理   2篇
基础理论   1篇
  2016年   1篇
  2010年   1篇
  2008年   2篇
  2000年   1篇
  1979年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Emergency mortality composting associated with a disease outbreak has special requirements to reduce the risks of pathogen survival and disease transmission. The most important requirements are to cover mortalities with biosecure barriers and avoid turning compost piles until the pathogens are inactivated. Temperature is the most commonly used parameter for assessing success of a biosecure composting process, but a decline in compost core temperature does not necessarily signify completion of the degradation process. In this study, gas concentrations of volatile organic compounds (VOCs) produced inside biosecure swine mortality composting units filled with six different cover/plant materials were monitored to test the state and completion of the process. Among the 55 compounds identified, dimethyl disulfide, dimethyl trisulfide, and pyrimidine were found to be marker compounds of the process. Temperature at the end of eight weeks was not found as an indicator of swine carcass degradation. However, gas concentrations of the marker compounds at the end of eight weeks were found to be related to carcass degradation. The highest gas concentrations of the marker compounds were measured for the test units with the lowest degradation (highest respiration rates). Dimethyl disulfide was found to be the most robust marker compound as it was detected from all composting units in the eighth week of the trial. Concentration of dimethyl disulfide decreased from a range of 290–4340 ppmv to 6–160 ppbv. Dimethyl trisulfide concentrations decreased to a range of below detection limit to 430 ppbv while pyrimidine concentrations decreased to a range of below detection limit to 13 ppbv.  相似文献   
2.
3.
Abstract: Skates are arguably the most vulnerable of exploited marine fishes. Their vulnerability is often assessed by examining fisheries catch trends, but these data are not generally recorded on a species basis except in France. Aggregated skate catch statistics tend to exhibit more stable trends than those of other elasmobranch fisheries. We tested whether such apparent stability in aggregated catch trends could mask population declines of individual species. We examined two time series of species-specific surveys of a relatively stable skate fishery in the northeast Atlantic. These surveys revealed the disappearance of two skate species, long-nose skate (   Dipturus oxyrhinchus ) and white skate (   Rostroraja alba ) and confirmed a previously documented decline of the common skate (   D. batis ). Of the remaining five skate species, the three larger ones have declined, whereas two smaller species have increased in abundance. The increase in abundance and biomass of the smaller species has resulted in the stability of the aggregated catch trends. Because there is significant dietary overlap among species, we suggest the increase in abundance of the smaller species may be due to competitive release as the larger species declined. A consequence of this kind of stability is that declining species cannot be detected without species-specific data, especially in taxa exhibiting competitive interactions. This may explain why previously documented disappearances of two species of skates went unnoticed for so long. The conservation of skates and other elasmobranchs requires species-specific monitoring and special attention to larger species.  相似文献   
4.
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.  相似文献   
5.
ABSTRACT: A flood control reservoir protects valuable developments on the downstream flood plain by storing flood waters and releasing them at a rate that will reduce the downstream damage. The water surface level of the flood pool behind the dam can fluctuate considerably during the occurrence of a large magnitude flood causing the inundation of trees, low vegetation, and water based recreation facilities located in those areas of the flood pool area that are normally well above the water level. The amount of damage that will occur in the upper levels of the flood storage area will depend on the depth and duration of the inundation that occurs. This, in turn, is directly related to the operating policy for the reservoir. A dynamic programming optimization model of flood control reservoir operation is presented. This model determines the reservoir operating schedule that minimizes downstream flood damages. Various constraints are added to the model to account for the environmental impacts of long periods of flood storage.  相似文献   
6.
Physical parameters of 12 co-compost cover materials were experimentally determined and predicted variations in airflow characteristics were evaluated under varying moisture contents. Predicted air-filled porosity showed high correlation with measured air-filled porosity, facilitating development of a reliable model of air-filled porosity that makes it possible to predict the effect of varying moisture content and compost bed height on air-filled porosity and permeability. Predicted air-filled porosity decreased with increasing moisture content and compost depth for all materials. Air-filled porosity of corn stalks, oat straw, soybean straw, leaves, alfalfa hay, wheat straw, silage, wood shavings and sawdust was in the range of 38-99%. Turkey litter, soil compost blend and beef manure showed air-filled porosity values less than 30% near saturation and the bottom of pile. In concert with the findings of other researchers, effective particle size of all materials increased with increasing moisture content from 20% to 80% of water holding capacity (WHC). It increased dramatically near saturation. In general, permeability increased with increasing air-filled porosity and decreasing bulk density, but the relationship between permeability and moisture content is complex. Permeability is dependent on the balance between particle size and air-filled porosity. If the influence of aggregated particle size on the permeability is significant, it will compensate for the effect of reduced air-filled porosity caused by compaction and moisture content. In this case, permeability will increase; in the reverse case, it will decrease. Permeability decreased for corn stalks, oat straw, silage, wood shavings, soybean straw, sawdust, turkey litter and wheat straw with increasing moisture content from 20% WHC to 50% WHC, regardless of the depth of the compost bed. But the permeability increased with increasing moisture level from 50% to 80% WHC at moderate to shallow simulated bed depths. The soil compost blend and leaves showed the permeability increasing when the moisture increased not only from 50% to 80% WHC but also from 20% to 50% WHC. Permeability of alfalfa hay and beef manure always decreased with increasing moisture levels and pile depth. In this study the maximum wet bulk density and mechanical strength decreased with increasing the moisture content. The method described for determining physical properties under varying moisture contents and compost bed depths will be very useful for designing and modeling airflow characteristics of a mortality composting process with a variety of materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号