首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
废物处理   1篇
基础理论   2篇
污染及防治   12篇
评价与监测   2篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2016年   2篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   2篇
排序方式: 共有18条查询结果,搜索用时 203 毫秒
1.
Increased petroleum prices, increased threat to the environment from exhaust emissions and global warming have generated intense international interest in developing renewable and alternative non-petroleum fuels for internal combustion engines. Evolving suitable technology for addressing energy crisis creates a continued investigation into the search for sustainable and clean-burning renewable fuels. This work investigates suitability of different non-edible-derived biodiesels such as cotton seed oil methyl ester (COME), Honne oil methyl ester (HnOME) and Rubber seed oil methyl ester (RuOME) to four stroke, single cylinder compression ignition (CI) engine. Engine tests were conducted to study the effect of fuel blending, thermal barrier coating (TBC) or Low Heat Rejection (LHR) and injector nozzle geometry on the performance, combustion and emission characteristics of COME, HnOME and RuOME in the modified CI engine. Blends of biodiesels with diesel were varied from 20 to 80% in steps of 20%. Two thermal barrier coatings of partially stabilized zirconium (PSZ) and aluminium oxide (Al2O3) were provided on the engine to make it fully adiabatic. Nozzle injectors of 3, 4 and 5 holes, with size of orifice varied from 0.2 to 0.3 mm size were selected for the study. It was concluded that B20 biodiesel blend, PSZ-coated engine and four hole nozzle injector of 0.2 mm size resulted in overall better engine performance with increased brake thermal efficiency (BTE) and reduced HC, CO, smoke emissions for the fuel combinations tested. Combustion analysis to study the effect of biodiesel blends, LHR coatings, injector nozzle geometry on the performance of the biodiesel-fuelled engine has been presented to give more insight into the behaviour of operation.  相似文献   
2.
In this study the elemental distribution of selected essential (Ca, Mg, Al, Mn, Cu, Fe, Co, Cr, Zn, Ni and Se) and the non-essential (Pb, Hg and As) elements were determined in the bulb and peel of Amadumbe (Colocasia esculenta) samples from eight different sites in KwaZulu-Natal, South Africa. The concentration of Se and As in the soil and in the Amadumbe bulbs were below the detection limit of 0.09 μg g?1. The total and bioavailable concentrations of the elements in conjunction with pH, soil organic matter (SOM) and cation exchange capacity (CEC) were determined in the soil samples from the eight sites. Statistical analysis was done to evaluate the impact of soil quality parameters on the chemical composition of the Amadumbe root. The results show accumulation or exclusion of certain elements by the bulb as evidenced by the noticeable increase or decrease of the concentrations of elements, respectively. Ca and Mg were found to be major elements in the range (2000-12000 μg g?1), whilst Mn, Zn, Fe and Al were found to be minor elements in the range (20-400 μg g?1). A general trend observed was that the plant favours the absorption of Zn over Cu. A positive correlation between Mg & Ca, Cu & Fe and Co & Ni was also observed. Statistical analysis revealed that the plant tended to accumulate Mg, Ca, Co, Cr and Pb whilst it excluded Hg and Fe, to a lesser extent.  相似文献   
3.
The ozone-initiated oxidation of 2-chloroethanol was followed by monitoring the consumption of the halogenated organic substrate. Gas chromatographic analysis of the ozonated products showed an increase in conversion from about 1 % after 3 h of ozone treatment to about 22 % after 12 h. The yields of major ozonated products identified and quantified namely acetaldehyde, acetic acid, and chloride ion increased proportionately as a function of ozone treatment time. The percent conversion of 2-chloroethanol in the presence of acetic acid or ethyl acetate were found to be higher than those under solvent-free conditions with similar products obtained. The use of activated charcoal during the ozonolyis of 2-chloroethanol showed a significant increase in the percent conversion of the substrate compared to solvent free ozonation. Based on the experimental findings, the overall mechanism for the reaction between 2-chloroethanol and ozone is described.  相似文献   
4.
Interest in vegetable oil extracted from idioblast cells of avocado fruit is growing. In this study, five extraction methods to produce avocado oil have been compared: traditional solvent extraction using a Soxhlet or ultrasound, Soxhlet extraction combined with microwave or ultra-turrax treatment and supercritical fluid extraction (SFE). Traditional Soxhlet extraction produced the most reproducible results, 64.76 ± 0.24 g oil/100 g dry weight (DW) and 63.67 ± 0.20 g oil/100 g DW for Hass and Fuerte varieties, respectively. Microwave extraction gave the highest yield of oil (69.94%) from the Hass variety. Oils from microwave extraction had the highest fatty acid content; oils from SFE had wider range of fatty acids. Oils from Fuerte variety had a higher monounsaturated: saturated FA ratio (3.45-3.70). SFE and microwave extraction produced the best quality oil, better than traditional Soxhlet extraction, with the least amount of oxidizing metals present.  相似文献   
5.
The distribution of 14 elements (both essential and non-essential) in the Hass and Fuerte cultivars of avocados grown at six different sites in KwaZulu-Natal, South Africa, was investigated. Soils from the different sites were concurrently analysed for elemental concentration (both total and exchangeable), pH, organic matter and cation exchange capacity. In both varieties of the fruit, concentrations of the elements Cd, Co, Cr, Pb and Se were extremely low with the other elements being in decreasing order of Mg > Ca > Fe > Al > Zn > Mn > Cu > Ni > As. Nutritionally, avocados were found to be a good dietary source of the micronutrients Cu and Mn. In soil, Pb concentrations indicated enrichment (positive geoaccumuluation indices) but this did not influence uptake of the metal by the plant. Statistical analysis was done to evaluate the impact of soil quality parameters on the nutrient composition of the fruits. This analysis indicated the prevalence of complex metal interactions at the soil–plant interface that influenced their uptake by the plant. However, the plant invariably controlled metal uptake according to metabolic needs as evidenced by their accumulation and exclusion.  相似文献   
6.
In this study the elemental distribution of selected essential (Ca, Mg, Al, Mn, Cu, Fe, Co, Cr, Zn, Ni and Se) and the non-essential (Pb, Hg and As) elements were determined in the bulb and peel of Amadumbe (Colocasia esculenta) samples from eight different sites in KwaZulu-Natal, South Africa. The concentration of Se and As in the soil and in the Amadumbe bulbs were below the detection limit of 0.09 μg g?1. The total and bioavailable concentrations of the elements in conjunction with pH, soil organic matter (SOM) and cation exchange capacity (CEC) were determined in the soil samples from the eight sites. Statistical analysis was done to evaluate the impact of soil quality parameters on the chemical composition of the Amadumbe root. The results show accumulation or exclusion of certain elements by the bulb as evidenced by the noticeable increase or decrease of the concentrations of elements, respectively. Ca and Mg were found to be major elements in the range (2000–12000 μg g?1), whilst Mn, Zn, Fe and Al were found to be minor elements in the range (20–400 μg g?1). A general trend observed was that the plant favours the absorption of Zn over Cu. A positive correlation between Mg & Ca, Cu & Fe and Co & Ni was also observed. Statistical analysis revealed that the plant tended to accumulate Mg, Ca, Co, Cr and Pb whilst it excluded Hg and Fe, to a lesser extent.  相似文献   
7.
Zinc oxide nanoparticles (ZnO2), a common ingredient of cosmetics has a huge variety of applications. Previous studies reported oxidative stress mediated toxicity of ZnO2 nanoparticles on various mammalian cell lines. Although zinc (Zn) is an essential mineral at higher concentrations this metal is toxic. The present study focused on size determination by monitoring changes in activities of antioxidant defense mechanism in response to oxidative stress induced by ZnO2 nanoparticles using mouse liver tissue homogenates. The study also investigated effects of oxidative stress induced DNA damage by determining formation of 8-OHdG in mouse liver homogenate. A cytotoxicity assay was also carried out in L929 cells to determine cell viability. The results of the study indicated that 50μg/ml of ZnO2 nanoparticles induced 50% cell death. Alterations in antioxidant parameters and 8-OHdG were also noted. Data showed that there was a concentration-dependent fall in cell viability, decrease antioxidant enzyme levels and increase formation of DNA adduct (8-OHdG) when mouse liver tissue homogenate were exposed to ZnO2 nanoparticles.  相似文献   
8.
Heavy metals,occurrence and toxicity for plants: a review   总被引:5,自引:0,他引:5  
Metal contamination issues are becoming increasingly common in India and elsewhere, with many documented cases of metal toxicity in mining industries, foundries, smelters, coal-burning power plants and agriculture. Heavy metals, such as cadmium, copper, lead, chromium and mercury are major environmental pollutants, particularly in areas with high anthropogenic pressure. Heavy metal accumulation in soils is of concern in agricultural production due to the adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. The influence of plants and their metabolic activities affects the geological and biological redistribution of heavy metals through pollution of the air, water and soil. This article details the range of heavy metals, their occurrence and toxicity for plants. Metal toxicity has high impact and relevance to plants and consequently it affects the ecosystem, where the plants form an integral component. Plants growing in metal-polluted sites exhibit altered metabolism, growth reduction, lower biomass production and metal accumulation. Various physiological and biochemical processes in plants are affected by metals. The contemporary investigations into toxicity and tolerance in metal-stressed plants are prompted by the growing metal pollution in the environment. A few metals, including copper, manganese, cobalt, zinc and chromium are, however, essential to plant metabolism in trace amounts. It is only when metals are present in bioavailable forms and at excessive levels, they have the potential to become toxic to plants. This review focuses mainly on zinc, cadmium, copper, mercury, chromium, lead, arsenic, cobalt, nickel, manganese and iron.  相似文献   
9.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 μ g g? 1 dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 μ g g? 1 and 150 μ g g? 1 dry weight, respectively. Aluminum concentrations were (in μ g g? 1 dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 μ g g? 1) and aluminum (> 360 μ g g? 1), while leaves had less than 200 μ g g? 1 of iron and 165 μ g g? 1 of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 μ g g? 1), Zn (50 μ g g? 1) and Cu (3.6 μ g g? 1). Some presence of lead in leaves (2.0 μ g g? 1) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   
10.
Interest in vegetable oil extracted from idioblast cells of avocado fruit is growing. In this study, five extraction methods to produce avocado oil have been compared: traditional solvent extraction using a Soxhlet or ultrasound, Soxhlet extraction combined with microwave or ultra-turrax treatment and supercritical fluid extraction (SFE). Traditional Soxhlet extraction produced the most reproducible results, 64.76 ± 0.24 g oil/100 g dry weight (DW) and 63.67 ± 0.20 g oil/100 g DW for Hass and Fuerte varieties, respectively. Microwave extraction gave the highest yield of oil (69.94%) from the Hass variety. Oils from microwave extraction had the highest fatty acid content; oils from SFE had wider range of fatty acids. Oils from Fuerte variety had a higher monounsaturated: saturated FA ratio (3.45–3.70). SFE and microwave extraction produced the best quality oil, better than traditional Soxhlet extraction, with the least amount of oxidizing metals present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号