首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  国内免费   1篇
废物处理   5篇
环保管理   5篇
综合类   2篇
基础理论   3篇
污染及防治   9篇
评价与监测   6篇
灾害及防治   3篇
  2023年   2篇
  2022年   6篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1999年   1篇
  1987年   1篇
排序方式: 共有33条查询结果,搜索用时 338 毫秒
1.
Monitoring of ambient PM10 (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 μm aerodynamic diameter) has been done at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata during November 2003 to November 2004. These sites were selected depending on the dominant anthropogenic activities. Metal constituents of atmospheric PM10 deposited on glass fibre filter paper were estimated using Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM10 concentrations. The 24 h average concentrations of Cr, Zn, Pb, Cd, Ni, Mn and Fe from ninety PM10 particulate samples of Kolkata were found to be 6.9, 506.1, 79.1, 3.3, 7.4, 2.4 and 103.6 ng/m3, respectively. The 24 h average PM10 concentration exceeded national ambient air quality standard (NAAQS) as specified by central pollution control board, India at both residential (Kasba) and industrial (Cossipore) areas with mean concentration of 140.1 and 196.6 μg/m3, respectively. A simultaneous meteorology study was performed to assess the influence of air masses by wind speed, wind direction, rainfall, relative humidity and temperature. The measured toxic trace metals generally showed inverse relationship with wind speed, relative humidity and temperature. Factor analysis, a receptor modeling technique has been used for identification of the possible sources contributing to the PM10. Varimax rotated factor analysis identified four possible sources of measured trace metals comprising solid waste dumping, vehicular traffic with the influence of road dust, road dust and soil dust at residential site (Kasba), while vehicular traffic with the influence of soil dust, road dust, galvanizing and electroplating industry, and tanning industry at industrial site (Cossipore).  相似文献   
2.
Effect of multiwalled carbon nanotubes on UASB microbial consortium   总被引:1,自引:0,他引:1  
The continuous rise in production and applications of carbon nanotubes (CNTs) has grown a concern about their fate and toxicity in the environment. After use, these nanomaterials pass through sewage and accumulate in wastewater treatment plants. Since, such plants rely on biological degradation of wastes; their activity may decrease due to the presence of CNTs. This study investigated the effect of multiwalled carbon nanotubes (MWCNTs) on upflow anaerobic sludge blanket (UASB) microbial activity. The toxic effect on microbial viability, extracellular polymeric substances (EPS), volatile fatty acids (VFA), and biogas generation was determined. The reduction in a colony-forming unit (CFU) was 29 and 58 % in 1 and 100 mg/L test samples, respectively, as compared to control. The volatile fatty acids and biogas production was also found reduced. The scanning electron microscopy (SEM) and fluorescent microscopy images confirmed that the MWCNT mediated microbial cell damage. This damage caused the increase in EPS carbohydrate, protein, and DNA concentration. Fourier transform infrared (FTIR) spectroscopy results supported the alterations in sludge EPS due to MWCNT. Our observations offer a new insight to understand the nanotoxic effect of MWCNTs on UASB microflora in a complex environment system.  相似文献   
3.
Mishra RR  Prajapati S  Das J  Dangar TK  Das N  Thatoi H 《Chemosphere》2011,84(9):1231-1237
Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40 °C) and salt concentration (4-12%) having an optimum growth at 37 °C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles.  相似文献   
4.
Reducing carbon emissions from deforestation and degradation in developing countries is of the central importance in efforts to combat climate change. A study was conducted to measure carbon stocks in various land-use systems including forms and reliably estimates the impact of land use on carbon (C) stocks in the forest of Rajasthan, western India (23°3′–30°12′N longitude and 69°30′–78°17′E). 22.8% of India is forested and 0.04% is the deforestation rate of India. In Indian forest sector of western India of Aravally mountain range covered large area of deciduous forest and it’s very helpful in carbon sequestration at global level. The carbon stocks of forest, plantation (reforestation) and agricultural land in aboveground, soil organic and fine root within forest were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (533.64?±?37.54 Mg·ha?1, simplified expression of Mg (carbon) ·ha?1) was significantly greater (P?<?0.05) than the plantation (324.37?±?15.0 Mg·ha?1) and the agricultural land (120.50?±?2.17 Mg·ha?1). Soil organic carbon in the forests (172.84?±?3.78 Mg·ha?1) was also significantly greater (P?<?0.05) than the plantation (153.20?±?7.48 Mg·ha?1) and the agricultural land (108.71?±?1.68 Mg·ha?1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 30-cm layer and decreased with soil depth. The aboveground carbon (ABGC): soil organic carbon (SOC): fine root carbon ratios (FRC), was 8:4:1, 4:5:1, and 3:37:1 for the forest, plantation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land.  相似文献   
5.

A good number of researchers investigated the impact of flow modification on hydrological, ecological, and geomorphological conditions in a river. A few works also focused on hydrological modification on wetland with some parameters but as far the knowledge is concerned, linking river flow modification to wetland hydrological and morphological transformation following an integrated modeling approach is often lacking. The current study aimed to explore the degree of hydrological alteration in the river and its effect on downstream riparian wetlands by adopting advanced modeling approaches. After damming, maximally 67 to 95% hydrological alteration was recorded for maximum, minimum, and average discharges. Wavelet transformation analysis figured out a strong power spectrum after 2012 (damming year). Due to attenuation of flow, the active inundation area was reduced by 66.2%. After damming, 524.03 km2 (48.9% of total pre-dam wetland) was completely obliterated. Hydrological strength (HS) modeling also reported areas under high HS declined by 14% after post-dam condition. Wetland hydrological security state (WSS) and HS matrix, a new approach, are used to explore wetland characteristics of inundation connectivity and hydrological security state. WSS was defined based on lateral hydrological connectivity. HS under critical and stress WWS zones deteriorated in the post-dam period. The morphological transformation was also well recognized showing an increase in area under the patch, edge, and a decrease in the area under the large core area. All these findings established a clear linkage between river flow modification and wetland transformation, and they provided a good clue for managing wetlands.

  相似文献   
6.
Journal of Material Cycles and Waste Management - Decades have passed, facing the energy crisis and environmental pollution and researching various possible solutions to tackle them. The use of...  相似文献   
7.
Carbon emission is supposed to be the strongest factor for global warming. Removing atmospheric carbon and storing it in the terrestrial biosphere is one of the cost-effective options, to compensate greenhouse gas emission. Millions of acres of abandoned mine land throughout the world, if restored and converted into vegetative land, would solve two major problems of global warming and generation of degraded wasteland. In this study, a manganese spoil dump at Gumgaon, Nagpur in India was reclaimed, using an integrated biotechnological approach (IBA). The physicochemical and microbiological status of the mine land improved after reclamation. Soil organic carbon (SOC) pool increased from 0.104% to 0.69% after 20 years of reclamation in 0–15 cm spoil depth. Soil organic carbon level of reclaimed site was also compared with a native forestland and agricultural land. Forest soil showed highest SOC level of 1.11% followed by reclaimed land and agriculture land of 0.70% and 0.40%, respectively. Soil profile studies of all three sites showed that SOC pool decreased from 0–15, 15–30, and 30–45 cm depths. Although reclaimed land showed less carbon than forestland, it showed better SOC accumulation rate. Reclamation of mine lands by using IBA is an effective method for mitigating CO2 emissions.  相似文献   
8.
This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800–2985 kg having the total volume of 2.80 m3 (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH4), carbon dioxide (CO2) and oxygen (O2) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies.  相似文献   
9.
Environmental Science and Pollution Research - Cadmium (Cd) phytotoxicity in agricultural land is a major global concern now-a-days resulting in very poor yield. Plant growth-promoting...  相似文献   
10.
Two strains of Bacillus sp. resistant to arsenate and lead designated as AsSP9 and PbSP6, respectively were isolated from the slag disposal site. They were identified to be related to Bacillus cereus cluster on the basis of 16S rDNA based sequence analysis and phenotypic characteristics. Both were rod-shaped (AsSP9, 2-5 microm and PbSP6, 2-4 microm), aerobic, salt tolerant (2-8% NaCI), endospore forming bacteria with minor differences like the AsSP9 showed sporangial bulging and PbSP6 had positive lipase activity. The temperature range for their growth was 20-40 degrees C and pH range 6.0-9.0 with an optimum temperature of 37 degrees C and pH of 7 for both strains. The principal nitrogen sources forAsSP9 and PbSP6 were DL-Tryptophan and L-Phenylalanine, respectively. The suitable carbon source forAsSP9 was lactose and for PbSP6 sucrose. The heavy metal accumulation efficiency was found to be 0.0047 mg g(-1) of dry mass forAsSP9 and 0.686 mg g(-1) of dry mass for PbSP6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号