首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   1篇
基础理论   1篇
污染及防治   3篇
评价与监测   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 109 毫秒
1
1.
Recovering dense nonaqueous‐phase liquid (DNAPL) remains one of the most difficult problems facing the remediation industry. Still, the most common method of recovering DNAPL is to physically remove the contaminants using common technologies such as total fluids recovery pumps, vacuum systems, and “pump‐and‐treat.” Increased DNAPL removal can be attained using surfactants to mobilize and/or solubilize the pollutants. However, very little is understood of the methods developed by petroleum engineers beginning in the 1960s to overcome by‐passed, low‐permeability zones in heterogeneous oil reservoirs. By injecting or causing the formation of viscous fluids in the subsurface, petroleum engineers caused increased in‐situ pressures that forced fluid flow into low permeability units as well as the higher permeability thief zones. Polymer flooding involves injecting a viscous aqueous polymer solution into the contaminated aquifer. Foam flooding involves injecting surfactant to decontaminate the high‐permeability zones and then periodic pulses of air to cause a temporary viscous foam to form in the high‐permeable zones after all DNAPL is removed. Later surfactant pulses are directed by the foam into unswept low‐permeable units. These methods have been applied to DNAPL removal using surfactants but they can also be applied to the injection of bio‐amendments into low‐permeability zones still requiring continued remediation. Here we discuss the principles of mobility control as practiced in an alluvial aquifer contaminated with chlorinated solvent and coal tar DNAPLs as well as some field results. © 2003 Wiley Periodicals, Inc.  相似文献   
2.
Performance assessment of NAPL remediation in heterogeneous alluvium   总被引:1,自引:0,他引:1  
Over the last few years, more than 40 partitioning interwell tracer tests (PITTs) have been conducted at many different sites to measure nonaqueous phase liquid (NAPL) saturations in the subsurface. While the main goal of these PITTs was to estimate the NAPL volume in the subsurface, some were specifically conducted to assess the performance of remedial actions involving NAPL removal. In this paper, we present a quantitative approach to assess the performance of remedial actions to recover NAPL that can be used to assess any NAPL removal technology. It combines the use of PITTs (to estimate the NAPL volume in the swept pore volume between injection and extraction wells of a test area) with the use of several cores to determine the vertical NAPL distribution in the subsurface. We illustrate the effectiveness of such an approach by assessing the performance of a surfactant/foam flood conducted at Hill Air Force Base, UT, to remove a TCE-rich NAPL from alluvium with permeability contrasts as high as one order of magnitude. In addition, we compare the NAPL volumes determined by the PITTs with volumes estimated through geostatistical interpolation of aquifer sediment core data collected with a vertical frequency of 5-10 cm and a lateral borehole spacing of 0.15 m. We demonstrate the use of several innovations including the explicit estimation of not only the errors associated with NAPL volumes and saturations derived from PITTs but also the heterogeneity of the aquifer sediments based upon permeability estimates. Most importantly, we demonstrate the reliability of the  相似文献   
3.
Textile effluents are characterized by high chemical oxygen demand, biological oxygen demand, total dissolved solids, pH and colour. Fabric preparation steps, such as desizing, scouring, bleaching and mercerizing, use various chemicals and plenty of water. The occurrence of unfixed dyes and other electrolytes in effluents poses serious threats to the environment. Available end-of-pipe treatment procedures are either expensive or not efficient; hence, a large number of small-scale industries succumb to this problem. So, finding an alternative eco-friendly process of textile production is of paramount interest. Here, we review three potential eco-friendly systems applicable to textile dyeing processes to minimize salt and water consumption. First, we review application of enzymatic processing in fabric preparation. Secondly, we review the use of biodegradable organic salts, such as trisodium citrate, magnesium acetate, tetrasodium edate and sodium salts of polycarboxylic acids, as fixation and exhaustion agents. Finally, we review various surface modifications of cotton to reduce the volume of effluent and total dissolved solids.  相似文献   
4.
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM2.5 and PM10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM2.5 and PM10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM2.5 and PM10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions.

Implications: This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.  相似文献   

5.
Belgaum city is a developmental hub of Karnataka State in India. In the recent time, the Government of Karnataka has planned to set up many processing industries in the vicinity of Belgaum to meet the growing needs of the region and to ease out the pressure on the already existing industrial hubs in Karnataka State. Ghataprabha, a tributary of river Krishna, is one of the major sources of water supply to Belgaum city and adjoining areas. During the last decade, a lot of anthropogenic activities such as unplanned agricultural activities are ongoing in many parts of the catchment. Therefore, people of Belgaum are more concerned about the quality of water in Ghataprabha river. Considering the significance of water quality of the river, surface water samples were collected during Pre- and Post-monsoon season from selected locations and analyzed for both physical and chemical constituents in the laboratory. The results indicate that the chemical parameters such as bicarbonates, sulphates, chlorides, sodium, potassium, calcium and magnesium are within the permissible limits. QUAL2E model was applied to assess the impact of point and non-point sources of pollution on the river water quality. Results show that the water quality conditions are highly acceptable all along the river stretch. Further, the variation of DO–BOD5 with river discharge was also estimated. Also, a significant variations in DO (decrease in DO) with the increase in river flow was observed. However, at the downstream end, considerable improvement in DO was noticed which is attributed to the damming effect of the reservoir.  相似文献   
6.
A variety of column experiments have been completed for the purpose of selecting and evaluating suitable surfactants for remediation of nonaqueous phase liquids (NAPLs). The various NAPLs tested in the laboratory experiments were tetrachloroethylene (PCE), trichloroethylene (TCE), jet fuel (JP4) and a dense nonaqueous phase liquid from a site at Hill Air Force Base, UT. Both Ottawa sand and Hill field soil were used in these experiments. Surfactant candidates were first screened using phase behavior experiments and only the best ones were selected for the subsequent column experiments. Surfactants which showed high contaminant solubilization, fast coalescence times, and the absence of liquid crystal phases and gels during the phase behavior experiments were tested in soil column experiments. The primary objective of the soil column experiments was to identify surfactants that recovered at least 99% of the contaminant. The secondary objective was to identify surfactants that show low adsorption and little or no loss of hydraulic conductivity during the column experiments. Results demonstrated that up to 99.9% of the contaminants were removed as a result of surfactant flooding of the soil columns. The addition of xanthan gum polymer to the surfactant solution was shown to increase remediation efficiency as a lower volume of surfactant was required for recovering a given volume of NAPL. Based on these experimental results, guidelines for designing highly efficient and robust surfactant floods have been developed and applied to a field demonstration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号