首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   2篇
基础理论   2篇
污染及防治   1篇
  2013年   1篇
  2009年   1篇
  2005年   1篇
  2003年   2篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality.  相似文献   
2.
Organic matter (OM) remineralization may be considered a key function of the benthic compartment of marine ecosystems and in this study we investigated if the input of labile organic carbon alters mineralization of indigenous sediment OM (OM priming). Using 13C-enriched diatoms as labile tracer carbon, we examined shallow-water sediments (surface and subsurface layers) containing organic carbon of different reactivity under oxic versus anoxic conditions. The background OM decomposition rates of the sediment used ranged from 0.08 to 0.44 μmol C mlws−1 day−1. Algal OM additions induced enhanced levels of background remineralization (priming) up to 31% and these measured excess fluxes were similar to mineralization of the added highly degradable tracer algal carbon. This suggests that OM priming may be important in marine sediments.  相似文献   
3.
用大型底栖动物和ODP系统评价珠江的有机污染   总被引:1,自引:2,他引:1  
采用大型底栖动物需氧有机体百分率ODP(oxygen demander percentage)法对广州珠江前航道、西航道和流溪河的下游段进行河流有机污染评价.结果显示:底栖动物需氧类群密度在三河段间分布确有显著性差异,并根据其ODP可以判断流溪河水质相对较好,水质级别为中国地表水环境质量标准(EQSSW)Ⅳ级,西航道和前航道水质级别都为Ⅴ级.通过测试,这一方法能成功地应用在珠江及流溪河,且该法可以较好地匹配于EQSSW五级评价系统,初步认为ODP系统可以成为一个较好的河流水质生物监测方法.图3表4参13  相似文献   
4.

Toxicity, uptake, and transformation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] by three species of poplar tree were assessed. Poplar cuttings were grown in sealed flasks with hydrophonic solutions and exposed to various concentrations of atrazine for a period of two weeks. Toxicity effects were evaluated by monitoring transpiration and measuring poplar cutting mass. Exposure to higher atrazine concentrations resulted in decrease of biomass and transpiration accompanied by leaf chlorosis and abscission. However, poplar cuttings exposed to lower concentrations of atrazine grew well and transpired at a constant rate during experiment periods. Poplar cuttings could take up, hydrolyze, and dealkylate atrazine to less toxic metabolites. Metabolism of atrazine occurred in roots, stems, and leaves and became more complete with increased residence time in tissue. These results suggest that phytoremediation is a viable approach to removing atrazine from contaminated water and should be considered for other contaminants.  相似文献   
5.
Survival and growth characteristics of two montane riparian willow species, Geyer willow (Salix geyeriana Andersson) and mountain willow (Salix monticola Bebb), grown in amended fluvial mine tailing were investigated in a greenhouse study. Willow stem cuttings were planted in lysimeters that simulated a 60-cm amended tailing profile with three static water depths (20, 40, and 60 cm) and a fluctuating water table for a total of four water table treatments. Species and water table treatments affected plant biomass and chemical composition of the soil and plant tissue. Mountain willow leaf, stem, and root biomass were 62, 95, and 164% greater, respectively, than for Geyer willow. Averaging across species, the fluctuating water table negatively affected leaf and stem biomass compared with the 20- and 60-cm water table treatments. Manganese was the only metal in plant tissue to strongly respond to water table treatments. Manganese concentrations in mountain willow leaf tissue were approximately twofold higher in the two most saturated water table treatments (20 cm and fluctuating) than in the least saturated water table treatment (60 cm). This trend was consistent with chemical analyses of the growth media, which reflected higher bioavailable Mn in the saturated tailing profile compared with the unsaturated profile. Results from this study indicate that mountain willow is a more vigorous and possibly more metal-tolerant species than Geyer willow when grown in amended mine tailing and that a fluctuating water table negatively affects willow growth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号