首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   3篇
环保管理   5篇
综合类   1篇
污染及防治   1篇
灾害及防治   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2012年   3篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be needed to address P transfers from soils and applied P sources. Innovative remediation practices are being developed to remove nonpoint P sources from surface water and groundwater using P sorbing materials (PSMs) derived from natural, synthetic, and industrial sources. A wide array of technologies has been conceived, ranging from amendments that immobilize P in soils and manures to filters that remove P from agricultural drainage waters. This collection of papers summarizes theoretical modeling, laboratory, field, and economic assessments of P removal technologies. Modeling and laboratory studies demonstrate the importance of evaluating P removal technologies under controlled conditions before field deployment, and field studies highlight several challenges to P removal that may be unanticipated in the laboratory, including limited P retention by filters during storms, as well as clogging of filters due to sedimentation. Despite the potential of P removal technologies to improve water quality, gaps in our knowledge remain, and additional studies are needed to characterize the long-term performance of these technologies, as well as to more fully understand their costs and benefits in the context of whole-farm- and watershed-scale P management.  相似文献   
2.
High levels of accumulated phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty into the Chesapeake Bay. The objective of this study was to design, construct, and monitor a within-ditch filter to remove dissolved P, thereby protecting receiving waters against P losses from upstream areas. In April 2007, 110 Mg of flue gas desulfurization (FGD) gypsum, a low-cost coal combustion product, was used as the reactive ingredient in a ditch filter. The ditch filter was monitored from 2007 to 2010, during which time 29 storm-induced flow events were characterized. For storm-induced flow, the event mean concentration efficiency for total dissolved P (TDP) removal for water passing through the gypsum bed was 73 ± 27% confidence interval (α = 0.05). The removal efficiency for storm-induced flow by the summation of load method was 65 ± 27% confidence interval (α = 0.05). Although chemically effective, the maximum observed hydraulic conductivity of FGD gypsum was 4 L s(-1), but it decreased over time to <1 L s(-1). When bypass flow and base flow were taken into consideration, the ditch filter removed approximately 22% of the TDP load over the 3.6-yr monitoring period. Due to maintenance and clean-out requirements, we conclude that ditch filtration using FGD gypsum is not practical at a farm scale. However, we propose an alternate design consisting of FGD gypsum-filled trenches parallel to the ditch to intercept and treat groundwater before it enters the ditch.  相似文献   
3.
气象指数灾害保险是目前全球范围内广泛研究的一种风险转移工具,它可以克服传统的自然灾害保险的局限性,在农业保险领域应用前景广阔。以福建省连江县为例,依据连江县台风灾害及台风活动特征,将能够对连江县造成一定损失的台风分成分别以大风、大雨和大风雨为主导的3类。结合连江站相关气象数据及概率分布建立了广义的台风灾害气象指数,最后构建了保险赔付路线图,以供有关部门参考。  相似文献   
4.
Riparian seeps have been recognized for their contributions to stream flow in headwater catchments, but there is limited data on how seeps affect stream water quality. The objective of this study was to examine the effect of seeps on the variability of stream NO3‐N concentrations in FD36 and RS, two agricultural catchments in Pennsylvania. Stream samples were collected at 10‐m intervals over reaches of 550 (FD36) and 490 m (RS) on 21 occasions between April 2009 and January 2012. Semi‐variogram analysis was used to quantify longitudinal patterns in stream NO3‐N concentration. Seep water was collected at 14 sites in FD36 and 7 in RS, but the number of flowing seeps depended on antecedent conditions. Seep NO3‐N concentrations were variable (0.1‐29.5 mg/l) and were often greater downslope of cropped fields compared to other land uses. During base flow, longitudinal variability in stream NO3‐N concentrations increased as the number of flowing seeps increased. The influence of seeps on the variability of stream NO3‐N concentrations was less during storm flow compared to the variability of base flow NO3‐N concentrations. However, 24 h after a storm in FD36, an increase in the number of flowing seeps and decreasing streamflow resulted in the greatest longitudinal variability in stream NO3‐N concentrations recorded. Results indicate seeps are important areas of NO3‐N delivery to streams where targeted adoption of mitigation measures may substantially improve stream water quality.  相似文献   
5.
Urea‐N is a component of bioavailable dissolved organic nitrogen (DON) that contributes to coastal eutrophication. In this study, we assessed urea‐N in baseflow across land cover gradients and seasons in the Manokin River Basin on the Delmarva Peninsula. From March 2010 to June 2011, we conducted monthly sampling of 11 streams (4 tidal and 7 nontidal), 2 wastewater treatment plants, an agricultural drainage ditch, and groundwater underlying a cropped field. At each site, we measured urea‐N, DON, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NO3?‐N, and NH4+‐N. In general, urea‐N comprised between 1% and 6% of TDN, with the highest urea‐N levels in drainage ditches (0.054 mg N/L) and wetland‐dominated streams (0.035–0.045 mg N/L). While urea‐N did not vary seasonally in tidal rivers, nontidal streams saw distinct urea‐N peaks in summer (0.038 mg N/L) that occurred several months after cropland fertilization in spring. Notably, the proportion of wetlands explained 78% of the variance in baseflow urea‐N levels across the Manokin watershed. In wetland‐dominated basins, we found urea‐N was positively related to water temperature and negatively related to DOC:DON ratios, indicating short‐term urea‐N dynamics at baseflow were more likely influenced by instream and wetland‐driven processes than by recent agricultural urea‐N inputs. Findings demonstrate important controls of wetlands on baseflow urea‐N concentrations in mixed land‐use basins.  相似文献   
6.
Stable isotopes of NO3? (δ15N–NO3? and δ18O–NO3?) were monitored in precipitation at a central Pennsylvania site during six storm events in 2005 to determine whether information on atmospheric oxidants (e.g., O3, NO2, and NOx), and storm tracks (using the NOAA HYSPLIT model) were capable of explaining observed seasonal and within-storm isotopic variation. Results showed that δ15N–NO3? and δ18O–NO3? in precipitation varied significantly during individual storm events. Seasonally, δ15N–NO3? and δ18O–NO3? in precipitation followed a pattern of depletion during the summer months and enrichment during the winter months. NO3? precursor concentrations and atmospheric oxidants were useful for explaining the seasonal and within-storm variation of δ15N–NO3? for all six storm events as evidenced by negative relationships with NO2:NOx ratios and ozone (O3). In comparison, δ18O–NO3? was positively related to O3 in three dormant season storms, which suggested that the O3 oxidation pathway was important for producing the high δ18O–NO3? observed in wintertime precipitation. Storm track information was especially useful for describing differences in δ15N–NO3?. Cool-sector storms originating from the E/NE produced slightly negative δ15N–NO3? values characteristic of automobile emissions, whereas warm-sector storms with tracks from the SW/S/SE produced slightly positive δ15N–NO3? values characteristic of coal-fired emissions. Lightning also may have been an important source of atmospheric NO3? during two warm-sector thunderstorms. This study showed that (1) information about oxidant levels can be useful to predict the seasonal and within-storm variation of NO3? stable isotopes in precipitation, and (2) knowledge of storm tracks (warm-sector versus cool-sector) may be important for determining sources of NO3? in wet deposition.  相似文献   
7.
8.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号