首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   3篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
A wetland mesocosm experiment was conducted in eastern North Carolina to determine if organic matter (OM) addition to soils used for in-stream constructed wetlands would increase NO3--N treatment. Not all soils are suitable for wetland substrate, so OM addition can provide a carbon and nutrient source to the wetland early in its development to enhance denitrification and biomass growth. Four batch studies, with initial NO3--N concentrations ranging from 30 to 120 mg L-1, were conducted in 2002 in 21 surface-flow wetland mesocosms. The results indicated that increasing the OM content of a Cape Fear loam soil from 50 g kg-1 (5% dry wt.) to 110 g kg-1 (11% dry wt.) enhanced NO3--N wetland treatment efficiency in spring and summer batch studies, but increases to 160 g kg-1 (16% dry wt.) OM did not. Wetlands constructed with dredged material from the USACE Eagle Island Confined Disposal Facility in Wilmington, NC, with initial OM of 120 g kg-1 (12% dry wt.), showed no improvement in NO3--N treatment efficiency when increased to 180 g kg-1 (18% dry wt.), but did show increased NO3--N treatment efficiency in all batch studies when increased to 220 g kg-1 (22% dry wt.). Increased OM addition and biosolids to the Cape Fear loam and dredged material blends significantly increased biomass growth in the second growing season when compared to no OM addition. Results of this research indicate that increased OM in the substrate will reduce the area required for in-stream constructed wetlands to treat drainage water in humid regions. It also serves as a demonstration of how dredged material can be used successfully in constructed wetlands, as an alternative to costly storage by the USACE.  相似文献   
2.
The N simulation model, DRAINMOD-N II, was field-tested using a 6-yr data set from an artificially drained agricultural site located in eastern North Carolina. The test site is on a nearly flat sandy loam soil which is very poorly drained under natural conditions. Four experimental plots, planted to a corn (Zea mays)-wheat (Triticum aestivum L.)-soybean (Glycine max.) rotation and managed using conventional and controlled drainage, were used in model testing. Water table depth, subsurface drainage, and N concentration in drain flow were measured and meteorological data were recorded continuously. DRAINMOD-N II was calibrated using the data from one plot; data sets from the other three plots were used for model validation. Simulation results showed an excellent agreement between observed and predicted nitrate-nitrogen (NO(3)-N) losses in drainage water over the 6-yr period and a reasonable agreement on an annual basis. The agreement on a monthly basis was not as good. The Nash-Sutcliffe modeling efficiency (EF) for monthly predictions was 0.48 for the calibration plot and 0.19, 0.01, and -0.02 for the validation plots. The value of the EF for yearly predictions was 0.92 for the calibration plot and 0.73, 0.62, and -0.10 for the validation plots. Errors in predicting cumulative NO(3)-N losses over the 6-yr period were remarkably small; -1.3% for the calibration plot, -8.1%, -2.8%, and 4.0% for the validation plots. Results of this study showed the potential of DRAINMOD-N II for predicting N losses from drained agricultural lands. Further research is needed to test the model for different management practices and soil and climatological conditions.  相似文献   
3.
We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model, which was adapted mainly from the 3-PG model. The forest growth model estimates net primary production, C allocation, and litterfall using physiology-based methods regulated by air temperature, water deficit, stand age, and soil N conditions. The performance of the newly developed DRAINMOD-FOREST model was evaluated using a long-term (21-yr) data set collected from an artificially drained loblolly pine ( L.) plantation in eastern North Carolina, USA. Results indicated that the DRAINMOD-FOREST accurately predicted annual, monthly, and daily drainage, as indicated by Nash-Sutcliffe coefficients of 0.93, 0.87, and 0.75, respectively. The model also predicted annual net primary productivity and dynamics of leaf area index reasonably well. Predicted temporal changes in the organic matter pool on the forest floor and in forest soil were reasonable compared to published literature. Both predicted annual and monthly nitrate export were in good agreement with field measurements, as indicated by Nash-Sutcliffe coefficients above 0.89 and 0.79 for annual and monthly predictions, respectively. This application of DRAINMOD-FOREST demonstrated its capability for predicting hydrology and C and N dynamics in drained forests under limited silvicultural practices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号