首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model, which was adapted mainly from the 3-PG model. The forest growth model estimates net primary production, C allocation, and litterfall using physiology-based methods regulated by air temperature, water deficit, stand age, and soil N conditions. The performance of the newly developed DRAINMOD-FOREST model was evaluated using a long-term (21-yr) data set collected from an artificially drained loblolly pine ( L.) plantation in eastern North Carolina, USA. Results indicated that the DRAINMOD-FOREST accurately predicted annual, monthly, and daily drainage, as indicated by Nash-Sutcliffe coefficients of 0.93, 0.87, and 0.75, respectively. The model also predicted annual net primary productivity and dynamics of leaf area index reasonably well. Predicted temporal changes in the organic matter pool on the forest floor and in forest soil were reasonable compared to published literature. Both predicted annual and monthly nitrate export were in good agreement with field measurements, as indicated by Nash-Sutcliffe coefficients above 0.89 and 0.79 for annual and monthly predictions, respectively. This application of DRAINMOD-FOREST demonstrated its capability for predicting hydrology and C and N dynamics in drained forests under limited silvicultural practices.  相似文献   

2.
Computer models have been widely used to evaluate the impact of agronomic management on nitrogen (N) dynamics in subsurface drained fields. However, they have not been evaluated as to their ability to capture the variability of nitrate-nitrogen (NO(3)-N) concentration in subsurface drainage at a wide range of N application rates due to possible errors in the simulation of other system components. The objective of this study was to evaluate the performance of Root Zone Water Quality Model2 (RZWQM2) in simulating the response of NO(3)-N concentration in subsurface drainage to N application rate. A 16-yr field study conducted in Iowa at nine N rates (0-252 kg N ha(-1)) from 1989 to 2004 was used to evaluate the model, based on a previous calibration with data from 2005 to 2009 at this site. The results showed that the RZWQM2 model performed "satisfactorily" in simulating the response of NO(3)-N concentration in subsurface drainage to N fertilizer rate with 0.76, 0.49, and -3% for the Nash-Sutcliffe efficiency, the ratio of the root mean square error to the standard deviation, and percent bias, respectively. The simulation also identified that the N application rate required to achieve the maximum contaminant level for the annual average NO(3)-N concentration was similar to field-observed data. This study supports the use of RZWQM2 to predict NO(3)-N concentration in subsurface drainage at various N application rates once it is calibrated for the local condition.  相似文献   

3.
Subsurface tile drains are a key source of nitrate N (NO3-N) losses to streams in parts of the north central USA. In this study, the Erosion Productivity Impact Calculator (EPIC) model was evaluated by comparing measured vs. predicted tile flow, tile NO3-N loss, soil profile residual NO3-N, crop N uptake, and yield, using 4 yr of data collected at a site near Lamberton, MN, for three crop rotations: continuous corn (Zea mays L.) or CC, corn-soybean [Glycine max (L.) Merr.] or CS, and continuous alfalfa (Medicago sativa L.) or CA. Initially, EPIC was run using standard Soil Conservation Service (SCS) runoff curve numbers (CN2) for CC and CS; monthly variations were accurately tracked for tile flow (r2 = 0.86 and 0.90) and NO3-N loss (r2 = 0.69 and 0.52). However, average annual CC and CS tile flows were underpredicted by -32 and -34%, and corresponding annual NO3-N losses were underpredicted by -11 and -52%. Predicted average annual tile flows and NO3-N losses generally improved following calibration of the CN2; tile flow underpredictions were -9 and - 12%, whereas NO3-N losses were 0.6 and -54%. Adjusting a N parameter further improved predicted CS NO3-N losses. Predicted monthly tile flows and NO3-N losses for the CA simulation compared poorly with observed values (r2 values of 0.27 and 0.19); the annual drainage volumes and N losses were of similar magnitude to those measured. Overall, EPIC replicated the relative impacts of the three cropping systems on N fate.  相似文献   

4.
This study was designed to evaluate the improved version of the Root Zone Water Quality Model (RZWQM) using 6 yr (1992-1997) of field-measured data from a field within Walnut Creek watershed located in central Iowa. Measured data included subsurface drainage flows, NO3-N concentrations and loads in subsurface drainage water, and corn (Zea mays L.) and soybean [Glycine mar (L.) Merr.] yields. The dominant soil within this field was Webster (fine-loamy, mixed, superactive, mesic Typic Endoaquolls) and cropping system was corn-soybean rotation. The model was calibrated with 1992 data and was validated with 1993 to 1997 data. Simulations of subsurface drainage flow closely matched observed data showing model efficiency of 99% (EF = 0.99), and difference (D) of 1% between measured and predicted data. The model simulated NO3-N losses with subsurface drainage water reasonably well with EF = 0.8 and D = 13%. The simulated corn grain yields were in close agreement with measured data with D < 10%. Nitrogen-scenario simulations demonstrated that corn yield response function reached a plateau when N-application rate exceeded 90 kg ha(-1). Fraction of applied N lost with subsurface drainage water varied from 7 to 16% when N-application rate varied from 30 to 180 kg ha(-1) after accounting for the nitrate loss with no-fertilizer application. These results indicate that the RZWQM has the potential to simulate the impact of N application rates on corn yields and NO3-N losses with subsurface drainage flows for agricultural fields in central Iowa.  相似文献   

5.
The nitrates (NO(3)-N) lost through subsurface drainage in the Midwest often exceed concentrations that cause deleterious effects on the receiving streams and lead to hypoxic conditions in the northern Gulf of Mexico. The use of drainage and water quality models along with observed data analysis may provide new insight into the water and nutrient balance in drained agricultural lands and enable evaluation of appropriate measures for reducing NO(3)-N losses. DRAINMOD-NII, a carbon (C) and nitrogen (N) simulation model, was field tested for the high organic matter Drummer soil in Indiana and used to predict the effects of fertilizer application rate and drainage water management (DWM) on NO-N losses through subsurface drainage. The model was calibrated and validated for continuous corn (Zea mays L.) (CC) and corn-soybean [Glycine max (L.) Merr.] (CS) rotation treatments separately using 7 yr of drain flow and NO(3)-N concentration data. Among the treatments, the Nash-Sutcliffe efficiency of the monthly NO(3)-N loss predictions ranged from 0.30 to 0.86, and the percent error varied from -19 to 9%. The medians of the observed and predicted monthly NO(3)-N losses were not significantly different. When the fertilizer application rate was reduced ~20%, the predicted NO(3)-N losses in drain flow from the CC treatments was reduced 17% (95% confidence interval [CI], 11-25), while losses from the CS treatment were reduced by 10% (95% CI, 1-15). With DWM, the predicted average annual drain flow was reduced by about 56% (95% CI, 49-67), while the average annual NO(3)-N losses through drain flow were reduced by about 46% (95% CI, 32-57) for both tested crop rotations. However, the simulated NO(3)-N losses in surface runoff increased by about 3 to 4 kg ha(-1) with DWM. For the simulated conditions at the study site, implementing DWM along with reduced fertilizer application rates would be the best strategy to achieve the highest NO(3)-N loss reductions to surface water. The suggested best strategies would reduce the NO(3)-N losses to surface water by 38% (95% CI, 29-46) for the CC treatments and by 32% (95% CI, 23-40) for the CS treatments.  相似文献   

6.
Subsurface drainage, a water management practice used to remove excess water from poorly drained soils, can transport substantial amounts of NO3 from agricultural crop production systems to surface waters. A field study was conducted from the fall of 1986 through 1994 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of time of N application and use of nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments [fall N, fall N + NP, spring preplant N, and split N (40% preplant and 60% sidedress)] were replicated four times and applied at 150 kg N ha(-1) for corn on individual drainage plots. Sixty-two percent of the annual drainage and 69% of the annual NO3 loss occurred in April, May, and June. Flow-weighted NO3-N concentrations in the drainage water were two to three times greater in the two years following the three-year dry period compared with preceding and succeeding years. Nitrate N concentrations and losses in the drainage from corn were greatest for fall N with little difference among the other three N treatments. Nitrate losses from soybean were affected more by residual soil NO3 following corn than by the N treatments per se. Averaged across the four rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > split N > spring N = fall N + NP. Under these conditions NO3 losses from a corn-soybean rotation into subsurface drainage can be reduced by 13 to 18% by either applying N in the spring or using NP with late fall-applied ammonia.  相似文献   

7.
Substantial amounts of NO3 from agricultural crop production systems on poorly drained soils can be transported to surface water via subsurface drainage. A field study was conducted from the fall of 1993 through 2000 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of fall vs. spring application of N and nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments (fall N, fall N + NP, spring preplant N, and spring N + NP) were replicated four times and applied at 135 kg N ha(-1) for corn on individual drainage plots. Drainage occurred in all seven years. Seventy-one percent of the annual drainage and 75% of the annual NO3 loss occurred in April, May, and June. Fifty-four percent of the NO3 lost in the drainage occurred during the corn phase and 46% during the soybean phase. Annual flow-weighted NO3-N concentrations for the fall, fall + NP, spring, and spring + NP treatments averaged 14.3, 11.5, 10.7, and 11.3 mg L(-1) during the corn phase but annual NO3-N concentrations were still > or =10 mg L(-1) in three of six years for the spring preplant treatment. Averaged across the six rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > spring N + NP > fall N + NP > spring N. Under these conditions, NO3 losses in subsurface drainage from a corn-soybean rotation can be reduced 14% by spring N and 10% by late fall N + NP compared with fall-applied N. Nitrate losses were not appreciably reduced by adding NP to spring preplant N.  相似文献   

8.
Water resources protection from nitrate nitrogen (NO3-N) contamination is an important public concern and a major national environmental issue. The abilities of the SOIL-SOILN model to simulate water drainage and nitrate N fluxes from orchardgrass (Dactylis glomerata L.) were evaluated using data from a 3-yr field experiment. The soil is classified as a Hagerstown silt loam soil (fine, mixed, semiactive, mesic Typic Hapludalf). Nitrate losses below the 1-m depth from N-fertilized grazed orchardgrass were measured with intact soil core lysimeters. Five N-fertilizer treatments consisted of a control, urine application in the spring, urine application in the summer, urine application in the fall, and feces application in the summer. The SOIL-SOILN models were evaluated using water drainage and nitrate flux data for 1993-1994, 1994-1995, and 1995-1996. The N rate constants from a similar experiment with inorganic fertilizer and manure treatments under corn (Zea mays L.) were used to evaluate the SOILN model under orchardgrass sod. Results indicated that the SOIL model accurately simulated water drainage for all three years. The SOILN model adequately predicted nitrate losses for three urine treatments in each year and a control treatment in 1994-1995. However, it failed to produce accurate simulations for two control treatments in 1993-1994 and 1995-1996, and feces treatments in all three years. The inaccuracy in the simulation results for the control and feces treatments seems to be related to an inadequate modeling of N transformation processes. In general, the results demonstrate the potential of the SOILN model to predict NO3-N fluxes under pasture conditions using N transformation rate constants determined through the calibration process from corn fields on similar soils.  相似文献   

9.
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes.  相似文献   

10.
11.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

12.
Beneficial effects of leaving residue at the soil surface are well documented for steep lands, but not for flat lands that are drained with surface inlets and tile lines. This study quantified the effects of tillage and nutrient source on tile line and surface inlet water quality under continuous corn (Zea mays L.) from relatively flat lands (<3%). Tillage treatments were either fall chisel or moldboard plow. Nutrient sources were either fall injected liquid hog manure or spring incorporated urea. The experiment was on a Webster-Canisteo clay loam (Typic Endoaquolls) at Lamberton, MN. Surface inlet runoff was analyzed for flow, total solids, NO(3)-N, NH(4)-N, dissolved P, and total P. Tile line effluent was analyzed for flow, NO(3)-N, and NH(4)-N. In four years of rainstorm and snowmelt events there were few significant differences (p < 0.10) in water quality of surface inlet or tile drainage between treatments. Residue cover minimally reduced soil erosion during both snowmelt and rainfall runoff events. There was a slight reduction in mineral N losses via surface inlets from manure treatments. There was also a slight decrease (p = 0.025) in corn grain yield from chisel-plow plots (9.7 Mg ha(-1)) compared with moldboard-plow plots (10.1 Mg ha(-1)). Chisel plowing (approximately 30% residue cover) alone is not sufficient to reduce nonpoint source sediment pollution from these poorly drained flat lands to the extent (40% reduction) desired by regulatory agencies.  相似文献   

13.
Nitrate losses from subsurface tile drained row cropland in the Upper Midwest U.S. contribute to hypoxia in the Gulf of Mexico. Strategies are needed to reduce nitrate losses to the Mississippi River. This paper evaluates the effect of fertilizer rate and timing on nitrate losses in two (East and West) commercial row crop fields located in south-central Minnesota. The Agricultural Drainage and Pesticide Transport (ADAPT) model was calibrated and validated for monthly subsurface tile drain flow and nitrate losses for a period of 1999-2003. Good agreement was found between observed and predicted tile drain flow and nitrate losses during the calibration period, with Nash-Sutcliffe modeling efficiencies of 0.75 and 0.56, respectively. Better agreements were observed for the validation period. The calibrated model was then used to evaluate the effects of rate and timing of fertilizer application on nitrate losses with a 50-yr climatic record (1954-2003). Significant reductions in nitrate losses were predicted by reducing fertilizer application rates and changing timing. A 13% reduction in nitrate losses was predicted when fall fertilizer application rate was reduced from 180 to 123 kg/ha. A further 9% reduction in nitrate losses can be achieved when switching from fall to spring application. Larger reductions in nitrate losses would require changes in fertilizer rate and timing, as well as other practices such as changing tile drain spacings and/or depths, fall cover cropping, or conversion of crop land to pasture.  相似文献   

14.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

15.
Monitoring nitrate N (NO3-N) leaching is important in order to judge the effect that agricultural practices have on the quality of ground water and surface water. Measuring drain discharge rates and NO3-N concentrations circumvents the problem of spatial variability encountered by other methods used to quantify NO3-N leaching in the field. A new flow-proportional drainage water sampling method for submerged drains has been developed to monitor NO3-N leaching. Both low and high discharge rates can be measured accurately, and are automatically compensated for fluctuations in ditch-water levels. The total amount of NO3-N leached was 10.6 kg N ha(-1) for a tile-drained silt-loam soil during the 114-d monitoring period. The NO3-N concentrations fluctuated between 5 mg L(-1) at deep ground water levels and 15 mg L(-1) at shallow levels, due to variations in water flow. A flow-proportional drainage water sampling method is required to measure NO3-N leaching accurately under these conditions. Errors of up to 43% may occur when NO3-N concentrations in the drainage water are only measured at intervals of 30 d and when the precipitation excess is used to estimate cumulative NO3-N leaching. Measurements of NO3-N concentrations in ground water cannot be used to accurately estimate NO3-N leaching in drained soils.  相似文献   

16.
Assessing the accuracy of agronomic and water quality simulation models in different soils, land-use systems, and environments provides a basis for using and improving these models. We evaluated the performance of the ADAPT model for simulating riverine nitrate-nitrogen (NO3-N) export from a 1500-km2 watershed in central Illinois, where approximately 85% of the land is used for maize-soybean production and tile drainage is common. Soil chemical properties, crop nitrogen (N) uptake coefficient, dry matter ratio, and a denitrification reduction coefficient were used as calibration parameters to optimize the fit between measured and simulated NO3-N load from the watershed for the 1989 to 1993 period. The applicability of the calibrated parameter values was tested by using these values for simulating the 1994 to 1997 period on the same watershed. Willmott's index of agreement ranged from 0.91 to 0.97 for daily, weekly, monthly, and annual comparisons of riverine nitrate N loads. Simulation accuracy generally decreased as the time interval decreased. Willmott's index for simulated crop yields ranged from 0.91 to 0.99; however, observed crop yields were used as input to the model. The partial N budget results suggested that 52 to 72 kg N ha(-1) yr(-1) accumulated in the soil, but simulated biological N fixation associated with soybeans was considerably greater than literature values for the region. Improvement of the N fixation algorithms and incorporation of mechanisms that describe soybean yield in response to environmental conditions appear to be needed to improve the performance of the model.  相似文献   

17.
Sediment and nutrient concentrations in surface water in agricultural regions are strongly influenced by agricultural activities. In the Corn Belt, recent changes in farm management practices are likely to affect water quality, yet there are few data on these linkages at the landscape scale. We report on trends in concentrations of N as ammonium (NH(4)) and nitrate (NO(3)), soluble reactive phosphorus (SRP), and suspended sediment (SS) in three Corn Belt streams with drainage areas of 12 to 129 km(2) for 1994 through 2006. During this period, there has been an increase in conservation tillage, a decline in fertilizer use, and consolidation of animal feeding operations in our study watersheds and throughout the Corn Belt. We use an autoregressive moving average model to include the effects of discharge and season on concentrations, LOWESS plots, and analyses of changes in the relation between discharge and concentration. We found significant declines in mean monthly concentrations of NH(4) at all three streams over the 13-yr period, declines in SRP and SS in two of the three streams, and a decline in NO(3) in one stream. When trend coefficients are converted to percent per year and weighted by drainage, area changes in concentration are -8.5% for NH(4), -5.9% for SRP, -6.8% for SS, and -0.8% for NO(3). Trends in total N and P are strongly tied to trends in NO(3), SRP, and SS and indicate that total P is declining, whereas total N is not.  相似文献   

18.
The Olsen-P status of grazed grassland (Lolium perenne L.) swards in Northern Ireland was increased over a 5-yr period (March 2000 to February 2005) by applying different rates of P fertilizer (0, 10, 20, 40, or 80 kg P ha(-1) yr(-1)) to assess the relationship between soil P status and P losses in land drainage water and overland flow. Plots (0.2 ha) were hydrologically isolated and artificially drained to v-notch weirs, with flow proportional monitoring of drainage water and overland flow. Annually, the collectors for overland flow intercepted between 11 and 35% of the surplus rainfall. Single flow events accounted for up to 52% of the annual dissolved reactive phosphorus (DRP) load. The Olsen-P status of the soil influenced DRP and total phosphorus (TP) concentrations in land drainage water and overland flow. Annual TP loss was highly variable and ranged from 0.19 to 1.55 kg P ha(-1) yr(-1) for the plot receiving no P fertilizer and from 0.35 to 2.94 kg P ha(-1) yr(-1) for the plot receiving 80 kg P ha(-1) yr(-1). Despite the Olsen-P status in the soils ranging from 22 to 99 mg P kg(-1), after 5 yr of fertilizer P applications it was difficult to identify a clear Olsen-P concentration at which P losses increased. Any relationship was confounded by annual variability of hydrologic events and flows and by hydrologic differences between plots. Withholding P fertilizer for over 5 yr was not long enough to lower P losses or to have an adverse effect on herbage P concentrations.  相似文献   

19.
The drainage of water and leaching of dissolved constituents represent major components of agroecosystem mass budgets that have been exceedingly difficult to measure. Equilibrium-tension lysimeters (ETLs) were used to monitor drainage, nitrogen (N), and carbon (C) leaching through Plano silt loam (fine-silty, mixed, superactive, mesic Typic Argiudoll) for a 4-yr period in a restored prairie and N-fertilized no-tillage and chisel-plowed maize (Zea mays L.) agroecosystems. Mean drainage recorded during 4 yr for the prairie, no-tillage, and chisel-plowed ecosystems totaled 461, 1,116, and 1,575 mm and represented 16, 33, and 47% of precipitation plus melting of drifted snow received, respectively. Total inorganic N leaching losses during the 4-yr period for the prairie, no-tillage, and chisel-plowed ecosystems were 0.6, 201, and 179 kg N ha(-1), respectively. Inorganic N leaching represented 26 and 24% of applied fertilizer N additions to the no-tillage and chisel-plowed agroecosystems. Total dissolved C leaching losses were 119, 435, and 502 kg C ha(-1) for the prairie, no-tillage, and chisel-plowed ecosystems, respectively. Sufficient dissolved organic carbon (DOC) and nitrate N (NO3- -N) existed in the prairie and agroecosystems to support subsoil denitrification. Potential denitrification, however, was limited by insufficient lengths of saturated soil conditions in all three ecosystems, the supply of DOC in the agroecosystems, and the supply of nitrate N in the prairie. Based on available DOC and nitrate N, the maximum contribution of denitrification below the root zone in the agroecosystems was less than 25% of the total amount of leached nitrate N and the probable contribution of denitrification was much less.  相似文献   

20.
Transport and fate of nitrate in headwater agricultural streams in Illinois   总被引:2,自引:0,他引:2  
Nitrogen inputs to the Gulf of Mexico have increased during recent decades and agricultural regions in the upper Midwest, such as those in Illinois, are a major source of N to the Mississippi River. How strongly denitrification affects the transport of nitrate (NO(3)-N) in Illinois streams has not been directly assessed. We used the nutrient spiraling model to assess the role of in-stream denitrification in affecting the concentration and downstream transport of NO(3)-N in five headwater streams in agricultural areas of east-central Illinois. Denitrification in stream sediments was measured approximately monthly from April 2001 through January 2002. Denitrification rates tended to be high (up to 15 mg N m(-2) h(-1)), but the concentration of NO(3)-N in the streams was also high (>7 mg N L(-1)). Uptake velocities for NO(3)-N (uptake rate/concentration) were lower than reported for undisturbed streams, indicating that denitrification was not an efficient N sink relative to the concentration of NO(3)-N in the water column. Denitrification uptake lengths (the average distance NO(3)-N travels before being denitrified) were long and indicated that denitrification in the streambed did not affect the transport of NO(3)-N. Loss rates for NO(3)-N in the streams were <5% d(-1) except during periods of low discharge and low NO(3)-N concentration, which occurred only in late summer and early autumn. Annually, most NO(3)-N in these headwater sites appeared to be exported to downstream water bodies rather than denitrified, suggesting previous estimates of N losses through in-stream denitrification may have been overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号