首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   1篇
污染及防治   4篇
  2013年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 218 毫秒
1
1.
This study was part of a larger effort to generate field data appropriate to the assessment of biosolids molybdenum (Mo) risk to ruminants. Corn (Zea mays L.) is an important component of cattle diet, and is a logical crop for biosolids amendment owing to its high N requirement. Paired soil and corn stover samples archived from two unique field experiments were analyzed to quantify the relationship (uptake coefficient, UC) between stover Mo and soil Mo load. Both studies used biosolids with total Mo concentrations typical of modern materials. Data from long-term (continuous corn) plots in Fulton County, IL confirm expected low Mo accumulation by corn stover, even at very high biosolids loads and soil Mo loads estimated to be near 18 kg Mo ha(-1). Uptake slopes were actually negative, but USEPA protocol would assign UC values of 0.001. Data from plots in Minnesota also suggested essentially no correlations between stover Mo and soil Mo loads for continuous corn. However, greater Mo accumulation in corn grown following soybean [Glycine max (L.) Merr.] suggests the possibility of enhanced Mo bioavailability to corn in corn-soybean rotations. Nevertheless, molybdenosis risk to cattle consuming corn stover produced on biosolids-amended land is small as stover Mo concentrations were always low and stover Cu to Mo ratios exceeded 2:1, which avoids molybdenosis problems.  相似文献   
2.
Abstract

This study was conducted to evaluate atrazine (2‐chloro‐4‐ethylamino‐6‐isopropyl‐1, 3, 5‐triazine) and alachlor (2‐chIoro‐N‐(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 μg L‐1). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   
3.
This study was conducted to evaluate atrazine (2-chloro-4-ethylamino-6-isopropyl-1,3,5-triazine) and alachlor (2-chloro-N-(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 microg L(-1)). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   
4.
Abstract

The collapse of ultrasonically‐generated cavitation bubbles can result in sonochemical reactions. The kinetics of sonochemical decomposition of alachlor and atrazine in water were determined using a sonicator operating in the continuous mode at maximum output. Alachlor and atrazine solutions, 3.1 nmol L‐1, were kept at constant temperature during the sonication. Decomposition at 30°C followed first‐order kinetics: k = 8.01 × 10‐3 min‐1 and 2.10 × 10‐3 min‐1 for alachlor and atrazine, respectively. It is not clear from the product analysis whether the decomposition was due to a thermal or free radical reaction. However, regardless of the decomposition mechanisms, the extrapolated half‐lives (86 and 330 min for alachlor and atrazine, respectively) support the potential development of ultrasonic waves to decompose herbicides in contaminated water.  相似文献   
5.
Abstract

Effects of soil pH on weak acid and weak base herbicide adsorption by soil are often determined by modifying soil pH in the laboratory. Modification of soil pH with acidic or basic amendments such as HCl or NaOH can cause changes in the soil‐solution system that may affect pesticide adsorption. The partition coefficients (Kd) for atrazine and dicamba by Waukegan, Piano, and Walla Walla silt loam soils stabilized in the field at different pH levels were compared to the Kd obtained when the soil pH was adjusted with acidic or basic amendments before herbicide addition. NaOH addition to raise soil pH generally increased the soluble soil organic carbon (SSOC) concentration in solution compared to field soils at the same pH and to soil treated with Ca(OH)2. NaOH decreased the soil solution ionic strength slightly. Acidifying soils increased the soil solution ionic strength, when compared to field soils at the same pH and had no effect on SSOC concentration. Dicamba adsorption to soil was minimal (Kd < 0.22) and not influenced by soil pH in the range of 4.1 to 6.0; adsorption by laboratory amended soils in some cases underestimated adsorption compared to nonamended soils. Atrazine adsorption increased with decreased pH in all soils, and was overestimated slightly by several laboratory treatments to reduce pH compared to adsorption by field soils. Treatments to raise the pH did not affect atrazine adsorption. Overall, herbicide adsorption differences due to pH modification were small (<30%), and were not affected by soil solution ionic strength, saturating cation, or SSOC concentration in solution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号