首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   1篇
污染及防治   3篇
评价与监测   2篇
  2020年   1篇
  2014年   2篇
  2009年   1篇
  1999年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
G?ran Sundblad  Ulf Bergstr?m 《Ambio》2014,43(8):1020-1028
Coastal development has severely affected habitats and biodiversity during the last century, but quantitative estimates of the impacts are usually lacking. We utilize predictive habitat modeling and mapping of human pressures to estimate the cumulative long-term effects of coastal development in relation to fish habitats. Based on aerial photographs since the 1960s, shoreline development rates were estimated in the Stockholm archipelago in the Baltic Sea. By combining shoreline development rates with spatial predictions of fish reproduction habitats, we estimated annual habitat degradation rates for three of the most common coastal fish species, northern pike (Esox lucius), Eurasian perch (Perca fluviatilis) and roach (Rutilus rutilus). The results showed that shoreline constructions were concentrated to the reproduction habitats of these species. The estimated degradation rates, where a degraded habitat was defined as having ≥3 constructions per 100 m shoreline, were on average 0.5 % of available habitats per year and about 1 % in areas close to larger population centers. Approximately 40 % of available habitats were already degraded in 2005. These results provide an example of how many small construction projects over time may have a vast impact on coastal fish populations.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0522-y) contains supplementary material, which is available to authorized users.  相似文献   
2.
The personal assessments of the current and expected future state of the environment by 3232 community respondents in 18 nations were investigated at the local, national, and global spatial levels. These assessments were compared to a ranking of each country's environmental quality by an expert panel. Temporal pessimism (“things will get worse”) was found in the assessments at all three spatial levels. Spatial optimism bias (“things are better here than there”) was found in the assessments of current environmental conditions in 15 of 18 countries, but not in the assessments of the future. All countries except one exhibited temporal pessimism, but significant differences between them were common. Evaluations of current environmental conditions also differed by country. Citizens' assessments of current conditions, and the degree of comparative optimism, were strongly correlated with the expert panel's assessments of national environmental quality. Aside from the value of understanding global trends in environmental assessments, the results have important implications for environmental policy and risk management strategies.  相似文献   
3.
We evaluated performance of species distribution models for predictive mapping, and how models can be used to integrate human pressures into ecological and economic assessments. A selection of 77 biological variables (species, groups of species, and measures of biodiversity) across the Baltic Sea were modeled. Differences among methods, areas, predictor, and response variables were evaluated. Several methods successfully predicted abundance and occurrence of vegetation, invertebrates, fish, and functional aspects of biodiversity. Depth and substrate were among the most important predictors. Models incorporating water clarity were used to predict increasing cover of the brown alga bladderwrack Fucus vesiculosus and increasing reproduction area of perch Perca fluviatilis, but decreasing reproduction areas for pikeperch Sander lucioperca following successful implementation of the Baltic Sea Action Plan. Despite variability in estimated non-market benefits among countries, such changes were highly valued by citizens in the three Baltic countries investigated. We conclude that predictive models are powerful and useful tools for science-based management of the Baltic Sea.  相似文献   
4.
Concern about nitrogen loads in marine environments has drawn attention to the existence and possible causes of long-term trends in nitrogen transport in rivers. The present study was based on data from the Swedish environmental monitoring programme for surface water quality; the continuity of these data is internationally unique. A recently developed semiparametric method was employed to study the development of relationships between runoff and river transport of nitrogen since 1971; the observed relationships were then used to produce time series of flow-normalised transports for 66 sites in 39 river basins. Subsequent statistical analyses of flow-normalised data revealed only few significant downward trends (p 0.05) during the time period 1971–1994, and the most pronounced of these downward trends were caused by reduced point emissions of nitrogen. The number of significant upward trends was substantially larger (15 for total-N and 18 for NO3-N). Closer examination of obtained results revealed the following: (i) the most pronounced upward trends were present downstream of lakes, and (ii) observed increases in nitrogen transport coincided in time and space with reduced point emissions of phosphorus or organic matter. This indicated that changes in the retention of nitrogen in lakes were responsible for the upward nitrogen trends. The hypothesis that nitrogen saturation of forest soils has caused a general increase in the riverine export of nitrogen from forested catchments in Sweden was not confirmed. Neither did the results indicate that improved agricultural practices have reduced the export of nitrogen from agricultural catchments.  相似文献   
5.
Sundblad  Göran  Bergström  Lena  Söderqvist  Tore  Bergström  Ulf 《Ambio》2020,49(5):1090-1099
Ambio - Improving water clarity is a core objective for eutrophication management in the Baltic Sea, but may influence fisheries via effects on fish habitat suitability. We apply an ensemble of...  相似文献   
6.
This article presents the results of the first critical examination of time series of riverine nutrient-load data for the entire Baltic Sea drainage area. Water quality data collected by or for the different national environmental agencies were compiled and analysed statistically to identify and remove inconsistent or obviously incorrect observations. Moreover, sampling tours were undertaken to acquire additional information about the present nutrient concentrations in the largest rivers in the study area. Gaps in the time series of approved data were then filled in by employing statistical interpolation and extrapolation methods. Thereafter, the concentration and runoff data were combined to obtain estimates of monthly nutrient loads for the time period 1970–93. The results of the calculations showed that although there had been substantial changes in land use, atmospheric deposition and wastewater treatment in many parts of the study area, the total riverine loads of nitrogen (N) and phosphorus (P) to the Baltic Sea have been fairly constant since 1980, and most likely also since 1970. Moreover, the interannual variation was clearly correlated to the runoff. The mean annual loads for the time period 1980–93 were found to be about 825 000 tonnes N and 41 000 tonnes P, respectively. This implies that (i) several other investigators have strongly underestimated the riverine loads of nutrients, especially the nitrogen, and that (ii) the riverine loads by far exceed the input to the Baltic Sea from other sources, {i.e.} atmospheric deposition, direct emissions from cities and industries along the Baltic Sea coast and nitrogen fixation by marine algae.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号