首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3135篇
  免费   146篇
  国内免费   1122篇
安全科学   180篇
废物处理   203篇
环保管理   209篇
综合类   1773篇
基础理论   542篇
污染及防治   1099篇
评价与监测   121篇
社会与环境   158篇
灾害及防治   118篇
  2024年   1篇
  2023年   39篇
  2022年   125篇
  2021年   114篇
  2020年   99篇
  2019年   76篇
  2018年   95篇
  2017年   142篇
  2016年   129篇
  2015年   201篇
  2014年   219篇
  2013年   289篇
  2012年   268篇
  2011年   264篇
  2010年   195篇
  2009年   212篇
  2008年   220篇
  2007年   200篇
  2006年   153篇
  2005年   107篇
  2004年   101篇
  2003年   113篇
  2002年   101篇
  2001年   98篇
  2000年   106篇
  1999年   105篇
  1998年   109篇
  1997年   105篇
  1996年   111篇
  1995年   72篇
  1994年   65篇
  1993年   54篇
  1992年   41篇
  1991年   19篇
  1990年   15篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1983年   3篇
  1982年   2篇
排序方式: 共有4403条查询结果,搜索用时 15 毫秒
1.
Zhu  Rong  Wang  Shixin  Srinivasakannan  C.  Li  Shiwei  Yin  Shaohua  Zhang  Libo  Jiang  Xiaobin  Zhou  Guoli  Zhang  Ning 《Environmental Chemistry Letters》2023,21(3):1611-1626
Environmental Chemistry Letters - The demand for lithium is growing rapidly with the increase in electric vehicles, batteries and electronic equipments. Lithium can be extracted from brines, yet...  相似文献   
2.
Huang  Ying  Jiang  Qiongji  Yu  Xubiao  Gan  Huihui  Zhu  Xia  Fan  Siyi  Su  Yan  Xu  Zhirui  He  Cunrui 《Environmental science and pollution research international》2021,28(37):51251-51264
Environmental Science and Pollution Research - Trace copper ion (Cu(II)) in water and wastewater can trigger peroxymonosulfate (PMS) activation to oxidize organic compounds, but it only works under...  相似文献   
3.
4.
河口切变锋引起的滩槽泥沙交换效应   总被引:3,自引:1,他引:2  
切变锋是河口湾锋系中最为常见和最易观察到的锋面类型。本文对长江口的切变锋进行现场观察和滩,槽同步水文资料分析,简述了长江口切变锋发生的部分和基本特性,提出了切变锋引起的滩,槽泥沙呈现螺旋形交换形式等论点。  相似文献   
5.
An active capping demonstration project in Washington, D.C., is testing the ability to place sequestering agents on contaminated sediments using conventional equipment and evaluating their subsequent effectiveness relative to conventional passive sand sediment caps. Selected active capping materials include: (1) AquaBlokTM, a clay material for permeability control; (2) apatite, a phosphate mineral for metals control; (3) coke, an organic sequestration agent; and (4) sand material for a control cap. All of the materials, except coke, were placed in 8,000‐ft test plots by a conventional clamshell method during March and April 2004. Coke was placed as a 1.25‐cm layer in a laminated mat due to concerns related to settling of the material. Postcap sampling and analysis were conducted during the first, sixth, and eighteenth months after placement. Although postcap sampling is expected to continue for at least an additional 24 months, this article summarizes the results of the demonstration project and postcap sampling efforts up to 18 months. Conventional clamshell placement was found to be effective for placing relatively thin (six‐inch) layers of active material. The viability of placing high‐value or difficult‐to‐place material in a controlled manner was successfully demonstrated with the laminated mat. Postcap monitoring indicates that all cap materials effectively isolated contaminants, but it is not yet possible to differentiate between conventional sand and active cap layer performance. Monitoring of the permeability control layer indicated effective reductions in groundwater seepage rates through the cap, but also showed the potential for gas accumulation and irregular release. All of the cap materials show deposition of new contaminated sediment onto the surface of the caps, illustrating the importance of source control in maintaining sediment quality. © 2006 Wiley Periodicals, Inc.  相似文献   
6.
7.
Carbon–silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment.The physicochemical properties of the materials were characterized by nitrogen physical adsorption(BET),scanning electron microscopy(SEM),and thermogravimetric(TG),and the adsorption properties of various organic waste gases were investigated.The results showed that microporous carbon materials were introduced successfully into the silica gel channels,thus showing the high adsorption capacity of activated carbon in high humidity organic waste gas,and the high stability and mechanical strength of the silica gel.The dynamic adsorption behavior confirmed that the carbon–silica material had excellent adsorption capacity for different volatile organic compounds(VOCs).Furthermore,the carbon–silica material exhibited excellent desorption characteristics:adsorbed toluene was completely desorbed at 150℃,thereby showing superior regeneration characteristics.Both features were attributed to the formation of hierarchical pores.  相似文献   
8.
Electrotrophs are microbes that can receive electrons directly from cathode in a microbial electrolysis cell (MEC). They not only participate in organic biosynthesis, but also be crucial in cathode-based bioremediation. However, little is known about the electrotrophic community in paddy soils. Here, the putative electrotrophs were enriched by cathodes of MECs constructed from five paddy soils with various properties using bicarbonate as an electron acceptor, and identified by 16S rRNA-gene based Illumina sequencing. The electrons were gradually consumed on the cathodes, and 25%–45% of which were recovered to reduce bicarbonate to acetic acid during MEC operation. Firmicutes was the dominant bacterial phylum on the cathodes, and Bacillus genus within this phylum was greatly enriched and was the most abundant population among the detected putative electrotrophs for almost all soils. Furthermore, several other members of Firmicutes and Proteobacteria may also participate in electrotrophic process in different soils. Soil pH, amorphous iron and electrical conductivity significantly influenced the putative electrotrophic bacterial community, which explained about 33.5% of the community structural variation. This study provides a basis for understanding the microbial diversity of putative electrotrophs in paddy soils, and highlights the importance of soil properties in shaping the community of putative electrotrophs.  相似文献   
9.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
10.
To clarify the effect of coking dust, sintering dust and fly ash on the activity of activated carbon for various industrial flue gas desulfurization and denitrification, the coupling mechanism of the mixed activated carbon and dust was investigated to provide theoretical reference for the stable operation. The results show that coking dust had 34% desulfurization efficiency and 10% denitrification efficiency; correspondingly, sintering dust and fly ash had no obvious desulfurization and denitrification activities. For the mixture of activated carbon and dust, the coking dust reduced the desulfurization and denitrification efficiencies by blocking the pores of activated carbon, and its inhibiting effect on activated carbon was larger than its own desulfurization and denitrification activity. The sintering dust also reduced the desulfurization efficiency on the activated carbon while enhancing the denitrification efficiency. Fly ash blocked the pores of activated carbon and reduced its reaction activity. The reaction activity of coking dust mainly came from the surface functional groups, similar to that of activated carbon. The reaction activity of sintering dust mainly came from the oxidative property of Fe2O3, which oxidized NO to NO2 and promoted the fast selectively catalytic reduction (SCR) of NO to form N2. Sintering dust was activated by the joint action of activated carbon, and both had a coupling function. Sintering dust enhanced the adsorption and oxidation of NO, and activated carbon further promoted the reduction of NOx by NH3; thus, the denitrification efficiency increased by 5%-7% on the activated carbon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号