首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
安全科学   2篇
环保管理   1篇
综合类   1篇
基础理论   4篇
污染及防治   7篇
评价与监测   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.

Microplastics have recently become a major environmental issue due to their ubiquitous distribution, uncontrolled environmental occurrences, small sizes and long lifetimes. Actual remediation methods include filtration, incineration and advanced oxidation processes such as ozonation, but those methods require high energy or generate unwanted by-products. Here we tested the degradation of fragmented, low-density polyethylene (LDPE) microplastic residues, by visible light-induced heterogeneous photocatalysis activated by zinc oxide nanorods. The reaction was monitored using Fourier-transform infrared spectroscopy, dynamic mechanical analyser and optical imaging. Results show a 30% increase of the carbonyl index of residues, and an increase of brittleness accompanied by a large number of wrinkles, cracks and cavities on the surface. The degree of oxidation was directly proportional to the catalyst surface area. A mechanism for polyethylene degradation is proposed.

  相似文献   
2.
3.
Aim of the present study was to synthesize titanium dioxide nanoparticles (YiO2 NPs) from marine actinobacteria and to develop an eco-friendly azo-dye degradation method. A total of five actinobacterial isolates were isolated from Chennai marine sediments, Tamilnadu, India and analyzed for the synthesis of TiO2 NPs using titanium hydroxide. Among these, the isolate PSV 3 showed positive results for the synthesis of TiO2 NPs, which was confirmed by UV analysis. Further characterization of the synthesized TiO2 NPs was done using XRD, AFM and FI'-IR analysis. Actinobacterial crude extract and synthesized TiO2 NPs was found efficient in degrading azo dye such as Acid Red 79 (AR-79) and Acid Red 80 (AR-80). Degradation percentage was found to be 81% for AR-79, 83% for AR-80 using actinobacterial crude extract and 84% for AR-79, 85% for AR-80 using TiO2 NPs. Immobilized actinobacterial ceils showed 88% for AR-79 and 81% for AR- 80, dye degrading capacity. Degraded components were characterized by FT-IR and GC-MS analysis. The phytotoxicity test with 500 μg/mL of untreated dye showed remarkable phenotypic as well as cellular damage to Tagetes erecta plant. Comparatively no such damage was observed on plants by degraded dye components. In biotoxicity assay, treated dyes showed less toxic effect as compared to the untreated dyes.  相似文献   
4.
A rapid, simple, accurate, and sensitive visible spectrophotometric method for the determination of trace amounts of hydrogen peroxide in acidic buffer medium is reported. The proposed method is based on the oxidative coupling of Ampyrone with dibenzazepin hydrochloride by hydrogen peroxide in the buffer medium of pH?4.0 which is catalyzed by ferrous iron. The blue-colored product formed with maximum absorption at 620?nm was found to be stable for 2?h. Beer's law is obeyed for hydrogen peroxide concentration in the range of 0.03-0.42?μg?ml(-1). The optimum reaction conditions and other important optical parameters are reported. The molar absorptive and Sandell's sensitivity are found to be 5.89?×?10(4)?mol(-1)?cm(-1) and 0.57?g/cm(2), respectively. The interference due to diverse ions and complexing agents was studied. The method is successfully applied to the determination of hydrogen peroxide in green plants satisfactorily.  相似文献   
5.
The mesostructured materials MCM-41 and SBA-15 were studied as possible supports of bromocresol green (BG) dye impregnation for the ammonia gas detection because of their large surface area, high regenerative property, and high thermal stability. X-ray diffraction, transmission electron microscopy, scanning electron microscope, and N2 adsorption analysis were used to characterize the prepared materials. These materials could sense ammonia via visible color change from yellowish-orange to blue color. The color change process of the nanostructured materials was fully reversible during 10 cyclic tests. The results indicated that the ammonia absorption responses of the two nanostructured materials were both very sensitive, and high linear correlation and high precision were achieved. As the gaseous ammonia concentrations were 50 and 5 ppmv, the response times for the SBA-15/BG were only 1 and 5 min, respectively. Moreover the BG dye-impregnated SBA-15 was less affected by the variation in the relative humidity. It also had faster response for the detection of NH3, as well as lower manufacturing price as compared to that of the dye-impregnated MCM-41. Such feature enables SBA-15/BG to be a very promising material for the detection of ammonia gas.  相似文献   
6.
This article reports a novel, eco-friendly herbal method to synthesize Cu nanoparticles in large scales. Cu nanoparticles are an alternative to Ag and Au nanoparticles and have potential applications in many industrial areas. Many synthetic routes have been documented for the preparation of copper nanoparticles, but very few routes are eco-friendly and large-scale. We report here the preparation of Cu nanoparticles from aqueous CuSO4 using non-toxic and inexpensive materials like curd, milk, and herbal extracts such as tamarind and lemon juice as capping agents. X-ray diffraction and transmission electron microscopy show that produced particles are nanocrystalline copper 20–50 nm in size with a face-centered cubic structure. Fourier-transformed infrared spectroscopy evidences the role of organic acids in the capping process. The novelty of this work is the synthesis of Cu nanoparticles from CuSO4 without electricity and using non-toxic, cheap capping agents.  相似文献   
7.
Serratia marcescens isolated from decaying coconut pith exhibited high lignolytic activity. Growth on indicator medium, analysis of residual indulin, and infra-red spectroscopic analysis indicated the lignolytic potential of the isolate. Ortho-Coumaric acid, ferulic acid, 2,3-dihydroxy cinnamic acid and protocatechuic acid were identified as intermediates involved in indulin degradation by S. marcescens. Qualitative confirmation and quantitative estimation of the intermediates were carried out by high performance thin layer chromatography (HPTLC).  相似文献   
8.
Triclosan is a common antimicrobial agent that is found in significant levels in the aquatic environment and may elicit effects on aquatic organisms through unexpected modes of action. In this study, triclosan was quantified in fish from the Kaveri River, India, by using the gas chromatography and mass spectrometry technique and it was found in the range of 0.73–50 ng/g wet weight (ww). The mean bioaccumulation factor based on water (BAFw 820) and sediment (BAFs 2.12) in the Kaveri River showed that triclosan is accumulative in fish, and reflects its feeding behavior. The bioaccumulation indicates triclosan's persistence or prevalence throughout the river stretch. Human risk assessment through dietary intake demonstrated that the triclosan exposure is five orders of magnitude lower than the acceptable daily intake (50 μg/kg bw) and US EPA reference dose (300 μg/kg bw/day). This investigation is the first to report the bioaccumulation of triclosan in freshwater fish from India. Further, the results indicate that this fish acts as a biomarker of exposure for triclosan and thus shall be used to report triclosan pollution in the future.  相似文献   
9.
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.  相似文献   
10.
The mesostructured materials MCM-41 and SBA-15 were studied as possible supports of bromocresol green (BG) dye impregnation for the ammonia gas detection because of their large surface area, high regenerative property, and high thermal stability. X-ray diffraction, transmission electron microscopy, scanning electron microscope, and N2 adsorption analysis were used to characterize the prepared materials. These materials could sense ammonia via visible color change from yellowish-orange to blue color. The color change process of the nanostructured materials was fully reversible during 10 cyclic tests. The results indicated that the ammonia absorption responses of the two nanostructured materials were both very sensitive, and high linear correlation and high precision were achieved. As the gaseous ammonia concentrations were 50 and 5 ppmv, the response times for the SBA-15/BG were only 1 and 5 min, respectively. Moreover, the BG dye-impregnated SBA-15 was less affected by the variation in the relative humidity. It also had faster response for the detection of NH3, as well as lower manufacturing price as compared to that of the dye-impregnated MCM-41. Such feature enables SBA-15/BG to be a very promising material for the detection of ammonia gas.

Implications: The detector tube is a convenient ambient ammonia detection device. However, almost all the commercial detector tubes can be used once only, which not only increases the purchase cost but also produces lots of waste. In this study, we developed two sensing materials that are sensitive for repeated usage. The two mesoporous silica-based materials, MCM-41 and SBA-15, are impregnated by an organic dye of bromocresol green to induce color change behavior that can be easily observed by the naked eye, and it is concluded that dye-impregnated SBA-15/BG is a very promising material for the detection of ammonia gas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号