首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
环保管理   11篇
综合类   4篇
基础理论   4篇
评价与监测   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
2.
The capacity of riparian zones to serve as critical control locations for watershed nitrogen flux varies with site characteristics. Without a means to stratify riparian zones into different levels of ground water nitrate removal capacity, this variability will confound spatially explicit source-sink models of watershed nitrate flux and limit efforts to target riparian restoration and management. We examined the capability of SSURGO (1:15 840 Soil Survey Geographic database) map classifications (slope class, geomorphology, and/or hydric soil designation) to identify riparian sites with high capacity for ground water nitrate removal. The study focused on 100 randomly selected riparian locations in a variety of forested and glaciated settings within Rhode Island. Geomorphic settings included till, outwash, and organic/alluvial deposits. We defined riparian zones with "high ground water nitrate removal capacity" as field sites possessing both >10 m of hydric soil width and an absence of ground water surface seeps. SSURGO classification based on a combination of geomorphology and hydric soil status created two functionally distinct sets of riparian sites. More than 75% of riparian sites classified by SSURGO as organic/alluviumhydric or as outwash-hydric had field attributes that suggest a high capacity for ground water nitrate removal. In contrast, >85% of all till sites and nonhydric outwash sites had field characteristics that minimize the capacity for ground water nitrate removal. Comparing the STATSGO and SSURGO databases for a 64000-ha watershed, STATSGO grossly under-represented critical riparian features. We conclude that the SSURGO database can provide modelers and managers with important insights into riparian zone nitrogen removal potential.  相似文献   
3.
Sexual selection has long been proposed as a mechanism leading to the diverse cichlid (Teleostei: Cichlidae) fauna of Lake Malawi, Africa. Many of the shallow-water, sand-dwelling, bower-building cichlid species are particularly well suited for studies of sexual selection because they participate in leks. Since females in lekking systems appear to acquire only genetic material from their mates, it has been suggested that leks are ideal systems to study female mate choice. The objectives of the investigation were to examine Lethrinops c.f. parvidens male bower characteristics (i.e., bower size and location) as well as other male characteristics (i.e., length, gular color, and duration on the lek) for their influence on male mating success as measured by the number of visits, circles, and eggs laid by females. These measures are nested in that a visit by a female may or may not lead to circling, and circling by a female may or may not lead to egg-laying. We found increased bower height and higher numbers of conspecific neighbors (analogous to shallow-water, near-shore bower positions) to be positively, significantly associated with the number of visits by females. The only significant correlate with the number of circles was visits, and similarly circles was the only significant correlate with the number of eggs laid. The R 2 value for the egg-laying regression was quite low (19.8%) compared with visits (54.3%) and circling (78.9%), suggesting that females may be using additional cues, that we failed to measure, when in close proximity to males or simply that a small proportion of the females were ready to spawn. Both indirect selection and direct selection pressure due to egg predation may have influenced female choice on the lek. Received: 10 April 1999 / Received in revised form: 26 July 1999 / Accepted: 18 September 1999  相似文献   
4.
Surface disinfection, as part of environmental hygiene practices, is an efficient barrier to gastroenteritis transmission. However, surface disinfectants may be difficult to obtain in remote, resource-limited, or disaster relief settings. Electrochemical oxidants (ECO) are chlorine-based disinfectants that can be generated using battery power to electrolyze brine (NaCl) solutions. Electrolysis generates a mixed-oxidant solution that contains both chlorine (HOCl, OCl?) and reactive oxygen species (e.g., ·OH, O3, H2O2, and ·O2?) capable of inactivating pathogens. One onsite generator of ECO is the Smart Electrochlorinator 200 (SE-200, Cascade Designs, Inc.). In a laboratory study, we assessed ECO surface disinfection efficacy for two gastrointestinal virus surrogates: bacteriophage MS2 and murine norovirus MNV-1. We quantified both infectivity and nucleic acid inactivation using culture-dependent and independent assays. At free available chlorine concentrations of 2,500 ppm and a contact time of 30 s, ECO inactivation of infective MS2 bacteriophage exceeded 7 log10 compared to MNV-1 disinfection of approximately 2 log10. Genomic RNA inactivation was less than infective virus inactivation: MS2 RNA inactivation was approximately 5 log10 compared to MNV-1 RNA inactivation of approximately 1.5 log10. The results are similar to inactivation efficacy of household bleach when used at similar free available chlorine concentrations. Our work demonstrates the potential of ECO solutions, generated onsite, to be used for surface disinfection.  相似文献   
5.
Agricultural lands have the potential to contribute to greenhouse gas mitigation by sequestering organic carbon within the soil. Credible and consistent estimates will be necessary to design programs and policies to encourage management practices that increase carbon sequestration. Because a nationwide survey of soil carbon by the wide range of natural resources and management conditions of the United States is prohibitively expensive, a simulation modeling approach must be used. The National Nutrient Loss Database (NNLD) is a modeling and database system designed and built jointly by the USDA– Natural Resources Conservation Service (NRCS) and Texas A&M University to provide science-based inferences on environmental impacts from changes in agricultural management practices and programs at the regional and national level. Currently, the NNLD simulates 16 crops and covers 1.35 × 108 ha. For estimating soil carbon sequestration, the database will be populated with 1.5 × 106 field-level model runs using the EPIC (Environmental Policy Impact Calculator) model, which includes newly incorporated carbon equations consistent with those in the Century model. Each run will represent a unique situation defined by state, crop, climate, soil, irrigation type, conservation practice, tillage system, and nutrient management treatment (nutrient rate, application frequency, application timing, and manure category). Results are to be assigned to specific National Resource Inventory points (NRI) to simulate regional and national baselines. In this article we present the modeling approach and discuss the strengths and limitations. Published online  相似文献   
6.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   
7.
What supports the adaptive capacity of watershed governance? Using document review, interviews, and network diagrams, we analyze how structural attributes of a governance network emerged and co-evolved with changes in biophysical conditions in a case study of a small watershed in northeast Ohio. Results indicate that the network governance structure that emerged evolved to become a hybrid of two different structural forms that diversified stakeholder engagement, generated social capital, improved social learning, and stimulated change in management practices, all of which have enhanced adaptive capacity. A significant challenge to adaptive capacity arises, however, as network governance has come to rely significantly on a centralized organization to broker relationships for information and other resources.  相似文献   
8.
One key assumption impacting data quality in viral inactivation studies is that reduction estimates are not altered by the virus seeding process. However, seeding viruses often involves the inadvertent addition of co-constituents such as cell culture components or additives used during preparation steps which can impact viral reduction estimates by inducing non-representative oxidant demand in disinfection studies and fouling in membrane assessments. The objective of this study was therefore to characterize a mammalian norovirus surrogate, murine norovirus (MNV), and bacteriophage MS2 at sequential stages of viral purification and to quantify their potential contribution to artificial oxidant demand and non-representative membrane fouling. Our results demonstrate that seeding solvent extracted and 0.1 micron filtered MNV to ~105 PFU/mL in an experimental water matrix will result in additional total organic carbon (TOC) and 30 min chlorine demand of 39.2 mg/L and 53.5 mg/L as Cl2, respectively. Performing sucrose cushion purification on the MNV stock prior to seeding reduces the impacts of TOC and chlorine demand to 1.6 and 0.15 mg/L as Cl2, respectively. The findings for MNV are likely relevant for other mammalian viruses propagated in serum-based media. Thus, advanced purification of mammalian virus stocks by sucrose cushion purification (or equivalent density-based separation approach) is warranted prior to seeding in water treatment assessments. Studies employing bacteriophage MS2 as a surrogate virus may not need virus purification, since seeding MS2 at a concentration of ~106 PFU/mL will introduce only ~1 mg/L of TOC and ~1 mg/L as Cl2 of chlorine demand to experimental water matrices.  相似文献   
9.
Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have synthesized current knowledge about the functioning principles, performance, and cost of common EEPs used to mitigate N pollution at the watershed scale. Our review describes seven EEPs known to decrease N to help watershed managers select the most effective techniques from among the following approaches: advanced-treatment septic systems, low-impact development (LID) structures, permeable reactive barriers, treatment wetlands, riparian buffers, artificial lakes and reservoirs, and stream restoration. Our results show a broad range of N-removal effectiveness but suggest that all techniques could be optimized for N removal by promoting and sustaining conditions conducive to biological transformations (e.g., denitrification). Generally, N-removal efficiency is particularly affected by hydraulic residence time, organic carbon availability, and establishment of anaerobic conditions. There remains a critical need for systematic empirical studies documenting N-removal efficiency among EEPs and potential environmental and economic tradeoffs associated with the widespread use of these techniques. Under current trajectories of N inputs, land use, and climate change, ecological engineering alone may be insufficient to manage N in many watersheds, suggesting that N-pollution source prevention remains a critical need. Improved understanding of N-removal effectiveness and modeling efforts will be critical in building decision support tools to help guide the selection and application of best EEPs for N management.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号