首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   2篇
  国内免费   2篇
安全科学   30篇
废物处理   17篇
环保管理   110篇
综合类   80篇
基础理论   103篇
环境理论   1篇
污染及防治   102篇
评价与监测   27篇
社会与环境   12篇
灾害及防治   2篇
  2023年   3篇
  2022年   5篇
  2021年   4篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   46篇
  2012年   15篇
  2011年   24篇
  2010年   18篇
  2009年   22篇
  2008年   14篇
  2007年   16篇
  2006年   25篇
  2005年   13篇
  2004年   20篇
  2003年   15篇
  2002年   22篇
  2001年   4篇
  2000年   10篇
  1999年   7篇
  1998年   6篇
  1997年   7篇
  1996年   10篇
  1995年   6篇
  1994年   9篇
  1993年   12篇
  1992年   9篇
  1991年   5篇
  1990年   9篇
  1989年   3篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1980年   4篇
  1978年   3篇
  1973年   3篇
  1968年   2篇
  1966年   2篇
  1962年   2篇
  1961年   3篇
  1958年   3篇
  1956年   2篇
排序方式: 共有484条查询结果,搜索用时 127 毫秒
1.
Effective management refers to the ability of a protected area or indigenous territory to meet its objectives, particularly as they relate to the protection of biodiversity and forest cover. Effective management is achieved through a process of consolidation, which among other things requires legally protecting sites, integrating sites into land‐use planning, developing and implementing management and resource‐use plans, and securing long‐term funding to pay for recurrent costs. Effectively managing all protected areas and indigenous territories in the Amazon may be needed to avoid a deforestation tipping point beyond which regional climatic feedbacks and global climate change interact to catalyze irreversible drying and savannization of large areas. At present, protected areas and indigenous territories cover 45.5% (3.55 million km2) of the Amazon, most of the 60–70% forest cover required to maintain hydrologic and climatic function. Three independent evaluations of a long‐term large‐scale philanthropic initiative in the Amazon yielded insights into the challenges and advances toward achieving effective management of protected areas and indigenous territories. Over the life of the initiative, management of sites has improved considerably, particularly with respect to management planning and capacity building, but few sites are effectively managed and many lack sufficient long‐term financing, adequate governance, support of nongovernmental organizations, and the means to withstand economic pressures. The time and money required to complete consolidation is still poorly understood, but it is clear that philanthropic funding is critical so long as essential funding needs are not met by governments and other sources, which could be on the order of decades. Despite challenges, it is encouraging that legal protection has expanded greatly and management of sites is improving steadily. Management of protected areas in other developing countries could be informed by improvements that have occurred in Amazonian countries.  相似文献   
2.
3.
4.
The goal of this study was to identify the relative toxicity ofambient areas in the Chesapeake Bay watershed by using a suiteof concurrent water column and sediment toxicity tests at seventy-five ambient stations in 20 Chesapeake Bay rivers from1990 through 1999. Spatial and temporal variability was examinedat selected locations throughout the 10 yr study. Inorganicand organic contaminants were evaluated in ambient water andsediment concurrently with water column and sediment tests toassess possible causes of toxicity although absolute causalitycan not be established. Multivariate statistical analysis wasused to develop a multiple endpoint toxicity index (TOX-INDEX) at each station for both water column and sediment toxicity data. Water column tests from the 10 yr testing period showed that49% of the time, some degree of toxicity was reported. The mosttoxic sites based on water column results were located inurbanized areas such as the Anacostia River, Elizabeth River andthe Middle River. Water quality criteria for copper, lead,mercury, nickel and zinc were exceeded at one or more of thesesites. Water column toxicity was also reported in localizedareas of the South and Chester Rivers. Both spatial and temporalvariability was reported from the suite of water column toxicitytests. Some degree of sediment toxicity was reported from 62% of the tests conducted during the ten year period. The ElizabethRiver and Baltimore Harbor stations were reported as the most toxic areas based on sediment results.Sediment toxicity guidelines were exceeded for one or more of thefollowing metals at these two locations: arsenic, cadmium,chromium, copper, lead, nickel and zinc. At the Elizabeth Riverstations nine of sixteen semi-volatile organics and two of sevenpesticides measured exceeded the ER-M values in 1990. Ambientsediment toxicity tests in the Elizabeth River in 1996 showedreduced toxicity. Various semi-volatile organics exceeded the ER-M values at a number of Baltimore Harbor sites; pyrene anddibenzo(a,h)anthracene were particularly high at one of thestations (Northwest Harbor). Localized sediment toxicity was alsoreported in the Chester, James, Magothy, Rappahannock, andPotomac Rivers but the link with contaminants was not determined.Both spatial and temporal variability was less for sedimenttoxicity data when compared with water column toxicity data. Acomparison of water column and sediment toxicity data for thevarious stations over the 10 yr study showed that approximatelyhalf the time agreement occurred (either both suite of testsshowed toxicity or neither suite of tests showed toxicity).  相似文献   
5.
Using chemical process simulation to design industrial ecosystems   总被引:2,自引:0,他引:2  
Chemical process simulation (CPS) software has been widely used by chemical (process) engineers to design, test, optimise, and integrate process plants. It is expected that industrial ecologists to bring these same problem-solving benefits to the design and operation of industrial ecosystems can use CPS. This paper provides industrial ecology researchers and practitioners with an introduction to CPS and an overview of chemical engineering design principles. The paper highlights recent research showing that CPS can be used to model industrial ecosystems, and discusses the benefits of using CPS to address some of the technical challenges facing companies participating in an industrial ecosystem. CPS can be used to (i) quantitatively evaluate and compare the potential environmental and financial benefits of material and energy linkages; (ii) solve general design, retrofit, or operational problems; (iii) help to identify complex and often counter-intuitive solutions; and (iv) evaluate what-if scenarios. CPS should be a useful addition to the industrial ecology toolbox.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号