首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
环保管理   3篇
  2017年   1篇
  2013年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
Due to resource constraints, long‐term monitoring data for calibration and validation of hydrologic and water quality models are rare. As a result, most models are calibrated and, if possible, validated using limited measured data. However, little research has been done to determine the impact of length of available calibration data on model parameterization and performance. The main objective of this study was to evaluate the impact of length of calibration data (LCD) on parameterization and performance of the Agricultural Policy Environmental eXtender model for predicting daily, monthly, and annual streamflow. Long‐term (1984‐2015) measured daily streamflow data from Rock Creek watershed, an agricultural watershed in northern Ohio, were used for this study. Data were divided into five Short (5‐year), two Medium (15‐year), and one Long (25‐year) streamflow calibration data scenarios. All LCD scenarios were calibrated and validated at three time steps: daily, monthly, and annual. Results showed LCD affected the ability of the model to accurately capture temporal variability in simulated streamflow. However, overall average streamflow, water budgets, and crop yields were simulated reasonably well for all LCD scenarios.  相似文献   
2.
Abstract: In optimization problems with at least two conflicting objectives, a set of solutions rather than a unique one exists because of the trade‐offs between these objectives. A Pareto optimal solution set is achieved when a solution cannot be improved upon without degrading at least one of its objective criteria. This study investigated the application of multi‐objective evolutionary algorithm (MOEA) and Pareto ordering optimization in the automatic calibration of the Soil and Water Assessment Tool (SWAT), a process‐based, semi‐distributed, and continuous hydrologic model. The nondominated sorting genetic algorithm II (NSGA‐II), a fast and recent MOEA, and SWAT were called in FORTRAN from a parallel genetic algorithm library (PGAPACK) to determine the Pareto optimal set. A total of 139 parameter values were simultaneously and explicitly optimized in the calibration. The calibrated SWAT model simulated well the daily streamflow of the Calapooia watershed for a 3‐year period. The daily Nash‐Sutcliffe coefficients were 0.86 at calibration and 0.81 at validation. Automatic multi‐objective calibration of a complex watershed model was successfully implemented using Pareto ordering and MOEA. Future studies include simultaneous automatic calibration of water quality and quantity parameters and the application of Pareto optimization in decision and policy‐making problems related to conflicting objectives of economics and environmental quality.  相似文献   
3.
Richards, R. Peter, Ibrahim Alameddine, J. David Allan, David B. Baker, Nathan S. Bosch, Remegio Confesor, Joseph V. DePinto, David M. Dolan, Jeffrey M. Reutter, and Donald Scavia, 2012. Discussion –“Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models” by Dale M. Robertson and David A. Saad. Journal of the American Water Resources Association (JAWRA) 1‐10. DOI: 10.1111/jawr.12006 Abstract: Results from the Upper Midwest Major River Basin (MRB3) SPARROW model and underlying Fluxmaster load estimates were compared with detailed data available in the Lake Erie and Ohio River watersheds. Fluxmaster and SPARROW estimates of tributary loads tend to be biased low for total phosphorus and high for total nitrogen. These and other limitations of the application led to an overestimation of the relative contribution of point sources vs. nonpoint sources of phosphorus to eutrophication conditions in Lake Erie, when compared with direct estimates for data‐rich Ohio tributaries. These limitations include the use of a decade‐old reference point (2002), lack of modeling of dissolved phosphorus, lack of inclusion of inputs from the Canadian Lake Erie watersheds and from Lake Huron, and the choice to summarize results for the entire United States Lake Erie watershed, as opposed to the key Western and Central Basin watersheds that drive Lake Erie’s eutrophication processes. Although the MRB3 SPARROW model helps to meet a critical need by modeling unmonitored watersheds and ranking rivers by their estimated relative contributions, we recommend caution in use of the MRB3 SPARRROW model for Lake Erie management, and argue that the management of agricultural nonpoint sources should continue to be the primary focus for the Western and Central Basins of Lake Erie.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号