首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   3篇
环保管理   1篇
综合类   3篇
基础理论   1篇
污染及防治   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
  2009年   2篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Crystal Violet (CV)) from aqueous solutions. The polyacrylamide/bentonite composite (PAA-B) was prepared by intercalative polymerization of acrylamide with Nabentonite in the presence of N,N0-methylenebisacrylamide as a crosslinking agent and hexamethylenediammine as propagater. PAA-B was subsequently treated with ethylenediammine to increase its loading capacity for HA. The surface characterizations of the adsorbent were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was detected at pH range 6.0–8.0. The capacity of HA-Am-PAA-B was found to decrease in the following order: MG > MB > CV. The kinetic and isotherm data were interpreted by pseudo-second order rate equation and Freundlich isotherm model, respectively. Experiments were carried out using binary solute systems to assess the competitive adsorption phenomenon. The experimental isotherm data for each binary solute combination of MG, MB and CV were analyzed using Sheindrof-Rebhun-Sheintuch (SRS) (multicomponent Freundlich type) equation.  相似文献   
2.
The remediation of wastewater requires treatment technologies which are robust, efficient, simple to operate and affordable such as adsorption. Lately, three-dimensional (3D) graphene based materials have attracted significant attention as effective adsorbents for wastewater treatment. The intrinsic properties of 3D graphene structure such as large surface area and interconnected porous structure can facilitate the transport of pollutants into the 3D network and provide abundant active sites for trapping the pollutants. For the synthesis of 3D graphene structure, ice-templating is commonly practiced due to its facile steps, cost effectiveness and high scalability potential. This review covers the ice-templating fabrication technique for 3D graphene based materials and their application as adsorbents in eliminating dyes and heavy metals from aqueous media. The assembly mechanisms of the ice-templating fsynthesis are comprehensively discussed. Further discussion on the fundamental principles, critical process parameters and characteristics of ice-templated 3D graphene structures is also included. A thorough review on the mechanisms for batch adsorption of dyes and heavy metals is presented based on the structures and properties of the 3D graphene materials. The review further evaluates the dynamic adsorption in packed columns and the regeneration of 3D graphene based materials.  相似文献   
3.
Environmental Science and Pollution Research - Heavy metals released by various industries are among the major pollutants found in water resources. In this research, biosorption technique was...  相似文献   
4.
Water contamination by non-steroidal anti-inflammatory drugs, such as acetaminophen, is an emerging ecological concern. In this study, a new three-dimensional manganese dioxide-engrafted reduced graphene oxide (3D MnO2/rGO) hybrid aerogel was developed for acetaminophen sequestration. The synthesis involved firstly the self-assembly of GO aerogel, followed by thermal reduction and in-situ MnO2 growth by redox-reaction. The aerogel demonstrated interlinked planes with smooth surfaces deposited with MnO2 nanospheres and pores of 138.4 – 235.3 µm width. The influences of adsorbent dosage, initial pH, acetaminophen concentration, temperature and contact time were investigated. It was determined that the adsorption of acetaminophen occurred on uniform sorption sites in the aerogel, as suggested by the best fit of data to the Langmuir isotherm, yielding a maximum adsorption capacity of 252.87 mg/g. This highest adsorption performance of the 3D MnO2/rGO aerogel was attained at a dosage of 0.6 g/L, initial pH of 6.2 and temperature of 40°C. The process kinetics were in-line with the pseudo-first-order and pseudo-second-order kinetics at 10 and 20 – 500 mg/L concentrations, respectively. Thermodynamic assay showed the spontaneity and endothermicity features of the 3D MnO2/rGO-acetaminophen system. The acetaminophen adsorption mechanisms were mainly hydrogen bonding and pore entrapment. Moreover, the as-synthesised aerogel was effectively regenerated using acetone and re-utilised in four adsorption-desorption cycles. Overall, the results highly recommend the implementation of the 3D MnO2/rGO hybrid aerogel for purification of wastewater polluted by acetaminophen residue.  相似文献   
5.
This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater. Adsorbed U(VI) ions were desorbed effectively (about 96.2+/-3.3%) by 0.1M HCl. The adsorbent was suitable for repeated use (more than four cycles) without any noticeable loss of capacity.  相似文献   
6.
A new adsorbent (ABS) with amidoxime functional group was prepared through graft polymerization of acrylonitrile onto banana stem (BS) using ceric ammonium nitrate (CAN)/HNO3 initiator system, followed by treatment with hydroxylamine hydrochloride in alkaline solution. Infrared spectroscopy, surface area analyzer, thermogravimetry, and potentiometric titration were used for the characterization of the adsorbent. Effective removal of U(VI) ions was demonstrated at the pH range 4.0–6.0. The mechanism for the removal of U(VI) ions by ABS was based on complexation adsorption model. Equilibrium was achieved in approximately 3 h. The experimental kinetic data were analyzed using first-order, second-order, and Elovich kinetic models, and are well fitted with second-order kinetics. The temperature dependence indicates an exothermic process. U(VI) adsorption was found to decrease with increase of ionic strength. The Freundlich isotherm model fitted the experimental equilibrium data well. The adsorption efficiency was tested using synthetic nuclear industry effluents. The maximum adsorption capacity for U(VI) removal was found to be 80 mg g-1 at 20°C. Adsorbed U(VI) ions were desorbed effectively, about 99% by 0.2 M HCl. Repeated adsorption/desorption cycles show the feasibility of the ABS for the removal of U(VI) ions from water and nuclear industry effluents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号