首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   6篇
  国内免费   1篇
综合类   19篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2006年   1篇
  2002年   2篇
  2000年   1篇
  1996年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
随着我国重点区域空气质量水平的整体改善,新疆天山北坡的污染问题日显突出. 为了探究当地低层大气稀释扩散能力的季节性差异及其对污染的影响,综合运用多种观测资料,对PM2.5污染和气象条件的季节性差异及二者之间的联系进行了系统分析,并利用区域空气质量模型开展数值试验,对低层大气稀释扩散能力进行了量化. 结果表明:①天山北坡主要城市冬季(12月—翌年1月)和春夏季(5—8月)PM2.5浓度最大可相差10.8倍. 对环流形势、地面气象要素、下垫面和低层大气层结等气象条件分析发现,低层大气稀释扩散能力是造成PM2.5浓度差异较大的首要外因. ②天山北坡主要城市春夏季的低层大气稀释扩散能力远高于冬季,最高为冬季的4.9倍;稀释扩散能力的逐月变化表明,稀释扩散能力最强和最弱月份最大相差5.6倍. 而同处北方的京津冀地区,春夏季与冬季最大相差2.0倍. 研究显示,合理利用低层大气稀释扩散能力的季节性差异,施行系统性的错峰生产,竭力减少冬季大气污染物排放,将是改善天山北坡城市空气质量的有效途径.   相似文献   
2.
利用CAMx(区域空气质量模型)中的PSAT(颗粒物源示踪技术),分析了重污染天气下分区域、分行业的污染物排放对京津冀地区PM2.5的贡献,设计了分行业排放的环境影响效率系数(EESCR)计算方法,并对“电能替代”(以电力行业产能替代民用能源消耗)情景方案下的排放进行模拟分析. 结果表明:在重污染天气背景下,电力行业排放对京津冀地区ρ(PM2.5)的贡献率较低,各地均低于10%,并且区域排放的贡献次序为京津冀以外地区>京津冀其他城市>当地,这与电力行业高架源排放的特征有关,而工业和民用行业对区域排放的贡献次序相反. PM2.5主要组分和前体物的分行业EESCR计算结果表明,电力行业ESSCR值均在y=1/2x趋势线之下,远低于其他行业,因此优先控制其他行业排放才是改善京津冀地区空气质量的关键.电能替代的情景模拟结果表明,电能替代是有效降低京津冀地区ρ(PM2.5)的可行方式. 研究显示,充分利用电力行业高架源排放的特点和便于集中处理的行业优势,尽力降低因产能增长带来的排放增量,实施电能替代可成为改善区域空气质量的有效途径之一.   相似文献   
3.
2014年京津冀地区PM2.5浓度时空分布及来源模拟   总被引:3,自引:0,他引:3  
采用模式(CAMx)模拟与污染物、气象观测资料相结合的方式,分析了2014年京津冀地区PM2.5时空分布及来源特征.结果表明:PM2.5具有较为明显的时间变化规律,呈秋冬高、春夏低的规律和双峰型分布的日变化特征;重污染日PM2.5高浓度(PM2.5>150μg/m3)主要分布在太行山前的华北平原区,特别是北京、保定、石家庄一线,而太行山、燕山等西部及北部山区PM2.5浓度明显低于平原区;重污染日京津冀地区PM2.5平均浓度在150μg/m3以上的面积约占总面积的73%;重污染日北京、天津、石家庄市的PM2.5外来输送率分别为58%、54%、39%;2014年10月6~12日京津冀地区发生的一次重污染过程中污染物由南向北输送,区域输送对于各地区PM2.5浓度有着十分重要的影响.  相似文献   
4.
中国东部春季一次强冷锋活动空气污染输送过程分析   总被引:13,自引:3,他引:10  
利用CMAQ(4.7.1)和HYSPLIT后向轨迹模式,结合长岛和洪泽湖站点污染物观测数据,对2011年3月31日—4月3日影响我国东北部地区的一次典型强冷锋天气空气污染过程进行模拟分析,验证表明模式能较好地模拟此次强冷锋过程. 由结果可知,此次强冷锋前后污染物浓度呈先升后降又上升的现象. 在冷锋移动过程中,锋前出现一条高浓度污染带,锋面将污染物抬升至800~500 hPa的高度,使污染物在对流层中层快速向西太平洋传输;冷锋对当地污染物的去除不仅有水平方向的推动作用,还会使污染物向高空输送. 锋面过后污染物浓度急剧降低,冷锋对长岛站点SO2、O3、NOx、PM2.5的清除率分别为90.87%、34.10%、50.56%、72.69%,对洪泽湖站点则分别为82.53%、50.45%、65.11%、36.80%. 锋面过去1~2 d后,高压控制天气形势下污染物再次开始积累、浓度回升. 冷锋前后污染物形成一个“积累—锋前抬升—高空平流输送—锋后大风清除—积累”的循环.   相似文献   
5.
气候变化的新认识   总被引:1,自引:0,他引:1  
徐峻 《世界环境》2000,(1):22-25
本文概述了10年来气候变化影响认识上的转变;气候变化预测,生态系统,农业、人类生存质量,等各方面,为我们提供了一个新视角。  相似文献   
6.
北京市冬季典型重污染时段PM2.5污染来源模式解析   总被引:5,自引:0,他引:5       下载免费PDF全文
为了探究近年来北京市PM2.5污染区域来源规律和重污染累积过程中PM2.5的生成途径,利用第三代三维空气质量模型CAMx的颗粒物源示踪(PSAT)和过程分析(PA)技术,模拟计算了北京市2013年和2014两次冬季典型重污染时段PM2.5的源-受体关系和物理、化学过程对PM2.5的生成贡献. 结果表明:在区域来源贡献中,随着空气污染等级由优升至严重污染,外地PM2.5贡献率从42.9%升至67.4%,本地贡献率由57.1%降至32.6%,其中外地二次PM2.5贡献率从20.2%升至39.8%,为北京市重污染时段的主要贡献因子;在外地贡献中,廊坊市、山东省、天津市、唐山市的贡献率较大,分别为3.2%~4.7%、3.8%~7.5%、3.6%~5.8%、2.2%~3.2%. PA分析结果表明:在不利气象条件(持续性的逆温层结)下,南边界的输送在重污染过程中起到了重要作用,对ρ(PM2.5)增长的贡献速率可达10 μg/(m3·h). 此外,本地化学转化在重污染时段对ρ(PM2.5)爆发性增长的贡献率也可以达到40.0%,其中特殊天气条件下二次PM2.5生成贡献的显著增加是造成ρ(PM2.5)出现峰值的主要原因. 研究显示,随着污染程度的加重,北京市受区域性污染的影响逐渐加大;在重污染过程中,不利气象条件下的本地化学转化与水平输送对近地层ρ(PM2.5)峰值的出现与维持发挥了重要作用.   相似文献   
7.
李珊珊  徐峻  孟凡  闫静 《环境工程》2015,33(12):84-89
采用轨迹模拟与观测资料相结合的方式,对北京市2014年10月6—12日1次典型空气重污染过程的大气环境背景、气象条件和形成原因进行分析。结果表明:京津冀区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,平均逆温强度每100 m为3.42℃,平均风速为1.56 m/s,平均湿度为83.13%;重污染过程中10月8—11日污染最重,北京ρ(PM_(2.5))日均值平均为264μg/m~3,且京津冀约20×104km~2国土面积处于重度污染水平;模拟结果显示污染最重的8—11日区域输送对北京PM_(2.5)贡献率在61%~69%;区域输送对北京PM2.5浓度起着更为重要的作用。  相似文献   
8.
星载激光雷达CALIOP实行对地例行的垂直切片式扫描,形成对地球大气中气溶胶和云高分辨的立体监测网。系统介绍星载激光雷达CALIOP的功能、特性、数据结构、反演过程、产品和不确定性,CALIOP资料和产品在示踪沙尘和污染物输送,验证模型模拟的云和气溶胶空间分布,云和气溶胶相互作用,气溶胶和云空间分布三维结构的长期平均状态,更新有关气溶胶和云特性的认识等方面的应用,以及在我国区域空气质量研究中的应用前景。  相似文献   
9.
利用2011—2015年星载激光雷达(CALIOP)探测资料分析京津冀地区气溶胶消光系数(AEC)的垂直分布,AEC表征了气溶胶的浓度水平。结果表明:AEC的垂直分布季节变化显著,2 km以下尤为明显;整层气溶胶光学厚度(AOD)在夏季(0.7)高于其他季节,湿度对AEC产生较大的影响;而500 m以下低层的AEC体现的特征与之相反,冬季最大(0.65 km~(-1)),春夏季较小(0.25 km~(-1))。夏秋季低层AEC存在较大昼夜差异,夜间最大为0.65 km~(-1),是白天的2.5倍,低层较大的相对湿度昼夜变化成为消光系数巨大差异的主因。南北向贯穿京津冀地区垂直剖面上AEC的分布显示,在夏季夜间,气溶胶浓度水平在南部地区的低层较高,而在其他季节并没有体现出明显的南北差异。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号