首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
散煤燃烧等低矮面源的排放对京津冀等地区采暖季ρ(PM2.5)贡献较大,是重污染天气形成的重要原因之一.针对京津冀地区居民采暖“煤改电”治理工程,以2025年为目标年,以不做任何散煤治理工作为基准情景,同时设计2种不同的控制情景(控制情景1、控制情景2),评估不同控制情景下“煤改电”带来的健康效益.通过综合考量民用散煤占燃煤消费量的比例、散煤PM2.5排放强度,结合京津冀地区各城市PM2.5源解析结果,确定民用散煤对大气环境ρ(PM2.5)的贡献系数,计算空气质量改善情况.在此基础上,综合流行病学相关研究成果,运用环境健康风险评估方法,预测不同控制情景中京津冀地区居民采暖“煤改电”带来的健康效益.结果表明:①京津冀地区在控制情景1中ρ(PM2.5)年均值分别下降4.9、4.9和1.1 μg/m3,在控制情景2中分别下降5.4、5.6和2.0 μg/m3;②在控制情景1、控制情景2中京津冀地区居民采暖“煤改电”带来的健康效益分别为266.55×108和352.34×108元,分别约占京津冀地区2015年GDP的0.38%和0.51%.研究显示,通过实施”煤改电”,京津冀地区可实现的健康效益相当可观,其中,北京市获得的健康效益最大,其次是河北省和天津市.   相似文献   

2.
为研究2017年12月—2018年2月冬季不同来源区域对豫南地区ρ(PM2.5)的贡献影响及污染特征,利用HYSPLIT-4后向轨迹模式模拟了豫南地区冬季24 h的气团后向轨迹,结合ρ(PM2.5)在线监测数据进行了聚类分析,研究了以豫南地区为受点的各月份PM2.5不同轨迹的输送特征,并使用潜在源贡献(PSCF)分析法和浓度权重轨迹(CWT)分析法识别了豫南地区冬季PM2.5的潜在贡献源区及贡献大小.结果表明:①信阳市空气质量最好,其次为驻马店市,南阳市空气质量最差;南阳市、信阳市和驻马店市ρ(PM2.5)分别超过GB 3095—2012《环境空气质量标准》二级标准限值(75 μg/m3)的1.5、1.2和1.2倍,ρ(PM2.5)日变化均呈双峰特征.②后向轨迹聚类分析表明,豫南地区主要受到来自西北和东北方向长距离传输和正南方向较短距离输送的影响.③潜在源区分析表明,除豫南地区及周边市县本地污染贡献外,冀鲁豫交界区域、陕鄂交界区域、陕西省中西部、湖北省东北部和西部、河南省中北部、山东省南部是影响豫南地区ρ(PM2.5)的主要潜在源区.研究显示,豫南地区PM2.5污染过程除了与地形条件、本地污染源排放有关外,来自东北、西北传输通道城市的远距离输送和南部的近距离传输也不容忽视.   相似文献   

3.
京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合ArcGIS软件空间插值法、SPSS 21.0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1)2017年京津冀地区ρ(PM2.5)年均为64.4μg/m3,比2016年下降11.5%,全年达标天数占比为74.2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92.4%;其中,1月平均ρ(PM2.5)最高。4)从空间范围看,整体上京津冀地区呈现南高北低,南北差异相对明显,其中其北部承德、张家口、秦皇岛地区ρ(PM2.5)最低,石家庄、邯郸PM2.5污染较严重。5)源解析结果表明,冬季北京地区主要受本地污染源影响,在春、秋季节受周边区域源贡献因子PSCF值>0.4,河北、山东、河南等地对北京PM2.5的污染有一定的源贡献。  相似文献   

4.
全国火电行业大气污染物排放对空气质量的影响   总被引:3,自引:0,他引:3  
基于WRF-CAMx空气质量模型,定量模拟了火电行业主要大气污染物排放对全国城市环境空气质量的影响.结果表明,火电行业对全国城市SO2、NO2、PM2.5、硫酸盐、硝酸盐及一次PM2.5年均浓度平均贡献率分别为15.6%、19.6%、8.5%、11.7%、12.0%和5.2%,并呈现空气污染越重地区,火电行业污染贡献率越低的总体特征.其中,京津冀鲁豫、长三角、以武汉城市群及长株潭城市群为中心的两湖平原地区、成渝地区中大部分空气污染最为严重的区域,火电行业对PM2.5年均浓度的贡献率低于8%.因此,火电行业对环境空气质量的影响总体较小,在深化火电行业污染减排的同时,必须强化非电力行业多污染物协同控制.  相似文献   

5.
京津冀及周边地区“2+26”城市为京津冀大气污染传输通道城市,也是我国空气污染最严重的区域之一.针对京津冀及周边地区“2+26”城市,利用中国环境监测总站公布的PM2.5、PM10、SO2、NO2、O3和CO数据,对2013—2019年京津冀及周边地区“2+26”城市大气污染特征进行分析,并探讨影响其空气质量变化的因素.研究表明:①2013—2019年京津冀及周边地区“2+26”城市空气质量总体向好,2019年ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(CO)和ρ(NO2)比2013年分别下降了50%、41%、79%、49%和20%,ρ(O3-8 h-90per)(臭氧日最大8 h平均值第90百分位数)比2013年升高了21%.②2013—2019年京津冀及周边地区“2+26”城市重污染天数持续减少,2019年比2013年下降67%,严重污染天数下降尤为明显,降幅达90%.优良天数比例虽然增加,但2016年以后基本稳定在50%左右,没有持续增加的趋势.③ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的最大值均出现在1月,ρ(O3-8 h)(臭氧日最大8 h平均值)的最大值出现在6月.ρ(PM2.5)越高,PM2.5/PM10和SO2/NO2越大,表明二次污染源和燃煤源的贡献越大.④就空间分布而言,ρ(PM2.5)和ρ(PM10)高值区主要集中在区域中南部太行山脉山前的平原地区,低值区主要集中在区域北部.⑤地理位置、气象条件、产业结构、能耗消耗以及减排政策是影响2013—2019年京津冀及周边地区“2+26”城市空气质量变化的重要因素.研究显示,随着大气污染防治减排措施实施的力度逐渐加大,政策影响已成为京津冀及周边地区“2+26”城市空气质量持续改善的最重要手段.   相似文献   

6.
侯露  朱媛媛  刘冰  李健军 《环境科学》2023,44(11):5899-5914
对比分析2015~2022年冬奥会期间(1月31日至2月20日)京津冀及周边区域44城市空气质量时空演变特征,量化同期气象、协同减排和跨区域传输对PM2.5浓度及组分变化贡献,为不利气象条件下区域空气质量联防联控提供科学参考.结果表明,2022年44城市PM2.5浓度为近8年农历同期最低(46μg·m-3),优良天占比最高(83.3%),不存在重污染天.PM2.5污染南重北轻,高值区主要集中在太行山沿线及燕山传输通道城市.2016年在春节中期未管控烟花爆竹燃放等源排放强度下,优良天占比93.5%,大气强扩散能力对空气质量改善至关重要.2022年静稳天气指数(SWI)同比增加2.1,大气扩散能力转差,44城市ρ(PM2.5)均值和峰值同比下降14μg·m-3和76μg·m-3,北京减排对PM2.5浓度降幅较未采取前增大96%,晋鲁豫地区在气象造成PM2.5浓度上升的不利背景下,峰值下降87μg...  相似文献   

7.
使用中尺度气象-化学耦合模式WRF-Chem针对MEIC源清单中五大部门来源(工业源、电力源、民用源、交通源和农业源)对华东地区PM2.5的影响进行了模拟研究,主要得到以下结论:春夏秋季PM2.5约40%~60%来源于工业源,冬季由于采暖供热燃用大量散烧煤,导致民用源对PM2.5的贡献最大,在山东、安徽和江苏省等高值区贡献率超过50%;农业源、电力源和交通源对PM2.5影响的季节差异不大,农业源贡献约20%~30%,交通源和火电源贡献约10%.因此冬季需主要控制民用源排放,春夏秋季主要控制工业源排放,其次是农业源排放.一次PM2.5在工业、电力和民用源贡献的PM2.5中所占比例可达50%~60%;NO3-和NH+4在交通源贡献的PM2.5中总比例可达53%,在农业源中总比例高达93%;由于模式对SO42-模拟偏低,SO42-在工业源和电力源贡献的PM2.5中占比约5%~15%;OC对来自民用源的PM2.5有30%的贡献,BC对来自交通源的PM2.5有15%的贡献;Na+和Cl-对PM2.5的贡献在各大来源中均低于3%.  相似文献   

8.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

9.
常州市冬季大气污染特征及潜在源区分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视.   相似文献   

10.
基于排放源清单,采用空气质量模式CAMx模拟现状情景下,鄂尔多斯、宁东与锡林格勒排放污染物扩散对京津冀地区的影响.结合3地区已批复环境影响报告、规划环评与战略环评等污染物排放数据,估算未来情景下3地区能源基地污染物排放对京津冀的影响.结果表明:现状情景下,3地区排放的PM2.5、SO2与NOx对京津冀的贡献浓度范围分别为0.079~1.134,0.012~0.633,0.008~0.852μg/m3,冬季对京津冀地区的影响要高于夏季,对京津冀地区冬季的平均贡献浓度值为0.710,0.339与0.413μg/m3,影响较大的京津冀城市为衡水市、石家庄市、邢台市、邯郸市与保定市;未来情景下3地区能源基地排放的PM2.5、SO2与NOx对京津冀城市浓度贡献范围分别为0.049~0.773,0.003~0.176,0.008~0.731μg/m3,冬季平均贡献浓度值为0.475,0.096与0.357μg/m3.  相似文献   

11.
京津冀地区主要排放源减排对PM2.5污染改善贡献评估   总被引:3,自引:2,他引:1  
研究选取2012年1月和7月作为冬夏两季代表时段,利用CMAQ/2D-VBS模型分析了冬夏两季京津冀地区主要排放源减排30%对改善区域PM_(2.5)污染的效果.结果表明,工业源对PM_(2.5)污染的贡献最大,其次是民用源,但工业源单位减排量贡献低于民用源,交通源和电厂源的整体贡献和单位减排量贡献均较小.工业部门内贡献最大的为钢铁冶金行业,其次是水泥、工业锅炉、炼焦、石灰砖瓦和化工行业.与各部门各物种排放量的比较反映出各排放源贡献大小与其一次PM_(2.5)排放水平高度相关.因京津冀地区冬季NO_x减排对PM_(2.5)形成的促进作用,以及冬季较弱的大气垂直扩散作用,各排放源夏季减排比冬季普遍更有效,交通源、电厂源以及工业源中的水泥、工业锅炉和石灰砖瓦行业夏季减排效果相比冬季优势明显.民用源由于采暖季排放较高而冬季贡献更明显,农业源因秸秆开放燃烧量大,冬季单位减排量贡献十分显著.从同等幅度减排考虑,应将工业源作为控制重点,优先控制其一次PM_(2.5)排放,在部门内进一步重点控制钢铁冶金行业的NO_x和SO_2排放、水泥行业的夏季NO_x排放以及炼焦行业的SO_2和NMVOC排放.民用源排放应着重在冬季采暖期控制.  相似文献   

12.
2013年1月北京市PM2.5区域来源解析   总被引:9,自引:11,他引:9  
李璇  聂滕  齐珺  周震  孙雪松 《环境科学》2015,36(4):1148-1153
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献.  相似文献   

13.
京津冀重霾期间PM_(2.5)来源数值模拟研究   总被引:5,自引:1,他引:4  
厘清PM2.5的来源是开展重霾污染防治的前提条件.本研究利用嵌套网格空气质量预报模式系统(NAQPMS)及其耦合的污染来源追踪技术,针对2013年1月我国中东部的重霾污染过程,定量模拟分析京津冀各城市PM2.5浓度的来源和相互贡献.研究结果表明,NAQPMS模式能够合理反映京津冀不同城市PM2.5浓度的变化特征.京津冀各城市近地面PM2.5浓度主要受本地排放影响,本地贡献率介于29.8%~63.7%.而800 m高空层各城市PM2.5浓度以外来贡献为主(69.3%~86.3%).在污染最严重的东南部地区(包括邢台、邯郸、沧州和衡水),PM2.5浓度受区域外的山东和河南的显著影响,贡献率可达25.2%~31.5%.因此,在京津冀区域内进行协同减排控制的同时,需进一步将山东、河南等省份纳入联防联控范围,才能有效防控重霾污染.  相似文献   

14.
西安是关中盆地经济发展的核心城市,特殊的地形和工业发展导致冬季细颗粒物(PM2.5)污染严重,制定科学合理的治理措施迫切需要明确PM2.5的来源.本文基于空气质量模式CAMx(Comprehensive Air Quality Model with extensions)、颗粒物源解析模块PSAT(Particulate Source Apportionment Technology)及融入多种来源数据后建立的排放清单来量化西安地区本地及区域传输贡献.在本文研究的重污染过程中,模式的模拟精度合理,模拟与观测值相关系数为0.78,FAC2达到95%.PSAT模块在本次重污染过程中对西安PM2.5的来源解析结果显示:在城区,西安本地为最大的排放源区,日均贡献率均大于60%,其次为咸阳8%,省外的传输为6%;在郊区,西安本地的贡献减少,传输贡献增加,其中阎良区传输贡献达到83%.对西安城区的一次细颗粒物面源排放量减少50%模拟后,城区和郊区来自周边区域渭南或咸阳的贡献率有6%~8%的增长.该研究结果表明需要从本地排放管控和区域联防两方面来改善西安地区的空气质量.  相似文献   

15.
承德市大气污染源排放清单及典型行业对PM2.5的影响   总被引:3,自引:1,他引:2  
陈国磊  周颖  程水源  杨孝文  王晓琦 《环境科学》2016,37(11):4069-4079
以承德市为研究对象,基于拉网式实地调查,获得了该地区2013年各类典型行业污染源详细的活动水平数据,以大气污染物排放清单编制指南为参考,辅以排放因子研究的系统梳理,建立了2013年承德市各行业区县分辨率大气污染源排放清单,并结合人口、路网、土地利用等数据进行了1 km×1 km网格分配.在此基础上建立气象-空气质量模型系统(WRFCAMx),应用颗粒物来源识别技术(PSAT),选取2013年典型季节代表月1、4、7、10月,针对承德市电力、建材、冶金等典型行业对PM_(2.5)的影响进行了定量评估.结果表明,2013年承德市SO_2、NO_x、TSP、PM_(10)、PM_(2.5)、CO、VOCs、NH_3的总排放量分别为81 134、72 556、368 750、119 974、51 152、1 281 371、170 642、81 742 t.工业源是SO_2、NO_x、CO、VOCs的主要排放源,分别占总排放量的89.5%、51.9%、82.5%和45.6%,NO_x的主要排放源还包括道路移动源和非道路移动源,分别占总排放量的26.7%和10.8%;TSP、PM_(10)、PM_(2.5)的主要排放源是无组织扬尘,分别占总排放量的76.7%、65.6%、46.5%;畜禽养殖、化肥施用是NH_3的主要排放源,分别占总排放量的67.1%、15.8%.数值模拟结果表明,无组织扬尘、其他行业、冶金、锅炉行业对环境PM_(2.5)影响较大,浓度贡献分别为23.1%、20.6%、13.3%和11.2%,制定具体控制措施时应得到重点关注.  相似文献   

16.
基于WRF-CMAQ空气质量模型,采用开关污染源排放的敏感性试验方法,定量分析了淮海经济区核心区污染排放对京津冀区域、"2+26 "大气污染传输通道城市、汾渭平原地区和长三角区域PM2.5的贡献.结果表明,对京津冀区域,污染贡献比例最大值出现在10月份,同时对不同城市的贡献值在10%以内变化;对" 2+26"大气传输通道城市,影响的时空差异变化明显,其中对聊城市、菏泽市和济南市的贡献值均超过了10%;对汾渭平原地区的贡献总体较弱,最大贡献值低于5%;对长三角区域,贡献值在不同城市间的时空差异变化明显.考虑到淮海经济区地处京津冀和长三角过渡地带,且对京津冀和长三角区域PM2.5影响较大,建议尽快将淮海经济区核心地区纳入国家大气污染重点控制区.  相似文献   

17.
大气PM2.5是当前我国城市和区域面临的最突出的大气污染问题,然而PM2.5及其关键组分污染的来源不清,严重制约了人们对PM2.5 的科学认知和污染防控的步伐.本研究以2013年1月中国东部地区一次典型重污染过程为研究案例,利用CAMx三维模型中耦合了物种示踪机制的颗粒物来源追踪方法,探讨和揭示了中国东部地区代表性城市上海及周边地区共4个源区(上海、苏南、浙北、大区域)、8类污染源(包括燃烧源、生产工艺过程、流动源、生活面源、挥发源、扬尘源、农业源、天然源)对上海城区大气中PM2.5及其关键组分包括水溶性无机离子(SO2-4、NO-3、NH+4)、元素碳(EC)和有机碳(OC)的污染贡献.研究结果表明,2013年1月份中国东部出现严重灰霾污染期间,上海城区PM2.5的主要区域贡献为上海本地污染源排放累积(PM2.5浓度贡献平均为55.4%±22.3%)和长距离输送(38.4%±20.0%).上海地区8类主要排放源中,扬尘源贡献均值最大,达到30.7%±31.8%,其次为燃烧源18.2%±15.6%、流动源18.6%±17.5%、挥发类源16.9%±18.0%.对上海市PM2.5组分的源解析研究发现,燃烧源对细颗粒物中硫酸盐和硝酸盐的浓度贡献最大,其浓度贡献分别达到56.2%和55.9%.铵盐中72.4%来源于挥发类源贡献,元素碳约78.3%来自于交通源贡献.挥发类源排放和流动源是主要的有机气溶胶贡献源,浓度贡献分别为36.2%和32.5%.  相似文献   

18.
京津冀地区钢铁行业污染物排放清单及对PM2.5影响   总被引:1,自引:0,他引:1  
以京津冀地区为研究区域,采取自下而上的方法,建立京津冀地区钢铁行业细化至焦化、烧结和球团、炼铁、炼钢、轧钢等工序的多污染物排放清单.清单估算结果显示,2015年京津冀地区钢铁行业SO2、NOx、TSP、PM10、PM2.5、CO、VOC的排放量分别为38.82、27.23、79.19、53.15、38.68、823.38、26.53万t,其中烧结和球团工序是最主要的污染物排放工序(17.0%~72.0%),其次为炼铁工序(4.6%~42.4%)和轧钢工序(3.5%~35.7%).采用具有污染物来源示踪功能的双层嵌套气象-空气质量模型系统(WRF-CAMx)耦合模型模拟京津冀地区钢铁行业污染物排放对区域大气PM2.5浓度的影响.模拟结果显示:钢铁行业在春夏秋冬这4个季节对京津冀地区PM2.5浓度贡献率分别达到14.0%、15.9%、12.3%、8.7%.各地市中,钢铁行业对唐山市PM2.5影响最大,年均PM2.5浓度贡献率高达41.2%,其次为秦皇岛市、石家庄市、邯郸市,年均PM2.5浓度贡献率分别达到19.3%、15.3%、15.1%.  相似文献   

19.
以大气污染物协同控制与精准治理的需求为导向,开展湖北省荆州市大气污染物的来源分析.基于FLEXPART-WRF模式揭示了2008—2017年荆州市PM2.5周边源"影响域"的季节气候特征,估算了大气污染物区域传输和局地排放的相对贡献,确定出不同季节的大气污染物主要传输通道.结果表明,荆州地区PM2.5主要"影响域"为湖北、湖南、河南和安徽省.不同季节湖北省外源传输对荆州PM2.5"影响域"的贡献率分别为春季50.4%、夏季33.9%、秋季42.6%、冬季43.0%和年均45.1%.春季3条区域传输通道分别为北通道(沿南阳盆地-荆州)、东通道(沿长江航道-荆州)以及南通道(沿雪峰山-荆州);夏季主要为南通道;秋、冬季分别为北通道、东北通道(沿大别山低山丘陵-荆州)及东通道.针对荆州主要3类重污染天气型的典型个例"影响域"分析表明,高压静稳型PM2.5污染主要来源于本地排放,省内贡献率达87.8%;低压倒槽型PM2.5污染主要来源于偏南输送和本地累积,省内贡献率达55.0%;冷锋输送型PM2.5污染主要来源于北路区域传输,省外贡献率达77.2%.对于冬季重污染期间,建议重点围绕荆州本地与省内荆门、襄阳、孝感、天门、潜江、武汉、随州、宜昌及省外常德、南阳、信阳等地开展协作,加强区域间大气污染联防联控.该项研究可为区域大气污染精细化管控与靶向治理提供科学依据.  相似文献   

20.
本研究于2019年12月至2020年1月在5个区域大气本底站:临安、金沙、龙凤山、上甸子和瓦里关,同步采集了PM2.5样品,分析了其中的非极性有机物:多环芳烃、正构烷烃和藿烷类化合物。结果表明,上甸子和龙凤山的多环芳烃平均浓度显著高于其他站点,分别为35.2±25.6 ng/m3和27.5±16.8 ng/m3;藿烷类物质的浓度在上甸子和临安出现高值,分别为2.72±1.78 ng/m3和2.47±0.990 ng/m3;正构烷烃浓度以临安最高,为86.7±40.6 ng/m3。对各站点多环芳烃和藿烷类化合物采用比值法,正构烷烃采用主峰碳数(Cmax)、碳优势指数(carbon preference index,CPI)和植物蜡贡献率(% Wax Cn),结合主成分分析-多元线性回归模型(PCA/MLR)综合进行源解析。结果显示采样期间除瓦里关外,其余站点燃烧源均以化石燃料源为主,贡献率分别为临安(94.9%) > 金沙(75.3%) > 龙凤山(74.7%) > 上甸子(62.5%) > 瓦里关(35.6%)。后向轨迹聚类分析(HYSPLIT)和潜在源贡献因子分析法(PSCF)表明各站点主要受到外来传输气团的影响,并查明了各站点的潜在污染源区。对背景站点的研究表明,东北地区和京津冀地区PM2.5中非极性有机物来源相似,京津冀地区的生物质燃烧源贡献率高于东北地区;长江中下游地区化石燃料贡献率显著高于生物质燃烧;华中地区燃煤和交通排放源排放贡献率均低于长江三角洲地区;青藏高原地区生物质燃烧贡献率远高于其他地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号