首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
综合类   5篇
  2022年   5篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
湿地是陆地生态系统重要的脱氮热点,其对削减流域面源氮负荷具有重要意义. 为探究水库流域沟渠、池塘等湿地的脱氮速率及其影响因素,分别于2021年春季(3月)与夏季(6月)采集了天目湖沙河水库流域内典型土地利用类型下沟塘湿地的原状泥-水柱,利用同位素示踪技术进行室内流动培养,测定了不同沟塘湿地的反硝化速率和厌氧氨氧化速率. 结果表明:①各沟塘湿地沉积物均具有较高的脱氮速率,春季脱氮速率范围为10.59~107.65 μmol/(m2·h),平均值为70.73 μmol/(m2·h),夏季脱氮速率范围为32.07~150.10 μmol/(m2·h),平均值为112.36 μmol/(m2·h),春季果园排水沟渠的脱氮速率最高,夏季茶园退水池塘的脱氮速率最高. ②春季和夏季不同沟塘湿地厌氧氨氧化作用对脱氮的贡献率(简称“厌氧氨氧化贡献率”)平均值分别为45.45%、36.26%,其中生活污水排放池塘和茶园退水池塘的厌氧氨氧化贡献率在夏季分别下降26.82%、14.98%,春季和夏季果园排水沟渠和入湖口河流湿地的厌氧氨氧化贡献率变化不大,平均值分别为21.17%、48.99%. ③统计分析表明,水体溶解性无机氮(DIN)浓度和沉积物有机碳含量与沉积物脱氮速率均呈显著相关,且高温与低溶解氧浓度条件下也有利于脱氮作用的进行. 研究显示,水库流域沟塘湿地具有较好的脱氮能力,通过有效调控管理能够大大增加流域氮的截留能力,对水库水质保障具有重要作用.   相似文献   
2.
为揭示亚热带深水水库水环境变化特征及其驱动力,于2020年5月—2021年4月在千岛湖布设100个监测点,开展了为期1年的逐月水环境调查,分析营养盐时空分布特征及水质风险.结果表明:千岛湖水体总氮(TN)、总磷(TP)、叶绿素a(Chla)、浮游植物生物量(PB)等关键水环境指标时空差异大,全库年均TN浓度为0.92 mg/L,其中月均最大值出现在3月,为1.04 mg/L,最小值出现在8月,为0.78 mg/L,安徽段库区年均值为1.60 mg/L,而东南库湾年均值为0.83 mg/L;全库年均TP浓度为0.021 mg/L,其中月均最大值出现在7月,为0.033 mg/L,最小值出现在11月,为0.013 mg/L,安徽段库区年均值为0.052 mg/L,而东南库湾年均值为0.015 mg/L;全库年均Chla浓度为5.1μg/L,其中月均最大值出现在7月,为10.0μg/L,最小值出现在11月,为1.6μg/L,安徽段库区年均值为11.4μg/L,而东南库湾年均值为3.0μg/L;全库全年Chla浓度最大层PB平均值为2.396 mg/L,月均最大值为8.246 mg/L(8月)...  相似文献   
3.
快速城镇化会加剧地表水体氮磷营养盐的富集,引起水体富营养化问题. 研究城镇分布对河流与湖库氮磷污染特征的影响,分析其污染热点与来源具有重要意义. 于2020年7月—2021年7月调查了新安江水系及千岛湖水体氮磷污染的时空变化特征,分析了水质与土地利用类型的关系,揭示了千岛湖水体氮磷污染的来源. 结果表明:①时间上,新安江水系氮磷浓度季节性变化差异明显. TN浓度表现为冬季枯水期〔(1.96±1.24) mg/L〕>主汛期〔(1.63±0.71) mg/L〕>春汛期〔(1.42±0.49) mg/L〕,TP浓度表现为主汛期〔(0.101±0.049) mg/L〕>冬季枯水期〔(0.067±0.068) mg/L〕>春汛期〔(0.06±0.033) mg/L〕,汛期氮、磷浓度分别是非汛期的1.6和2.4倍. ②空间上,城镇污染对水体营养盐浓度影响显著. 水体流经人口集中、城镇化程度高的屯溪区后,TN、TP、NH4+-N浓度平均增幅分别为86.1%、77.7%和164.4%,干流水体受纳歙县城镇三大支流来水后,TN、TP浓度平均增幅分别为47.6%、70.3%. ③ Spearman相关分析结果表明,5 km缓冲区耕地和建筑用地面积占比与氮磷营养盐各形态浓度之间均存在显著正相关关系,其中建筑用地面积占比对NH4+-N浓度影响较大(R=0.323,P<0.001),耕地面积占比对NO3?-N影响相对较大(R=0.265,P<0.05). 研究显示,城镇面源污染是新安江水系氮磷污染的主要来源,降雨径流是水体磷富集的主要驱动力,枯水期城镇污染对水体氮浓度的影响较大,在千岛湖营养盐控制中应尤为关注上游城镇污染管控.   相似文献   
4.
大气氮磷沉降是湖库营养盐输入的重要途径,深刻地影响着湖库水体营养盐平衡及生态系统演化进程. 为了解山区大型水库大气氮磷沉降对水体的贡献,于2020年11月—2021年10月在千岛湖街口和淳安县城2个监测站点开展了大气氮磷干湿沉降周年观测,分析千岛湖大气氮磷沉降特征及入库负荷. 结果表明:千岛湖街口监测点大气总氮(TN)、总磷(TP)沉降量分别为1 774.83和34.11 kg/(km2·a),淳安县城监测点大气TN、TP沉降量分别为1 799.73和34.44 kg/(km2·a). 大气TN沉降以湿沉降为主,街口和淳安县城监测点TN湿沉降分别占总沉降的92%和88%;两个监测点大气TP沉降的组成差异较大,其中街口监测点湿沉降占53%,淳安县城监测点干沉降占60%. 气象条件(降雨)叠加人类活动(施肥等农业活动和旅游等城市活动)能够显著增加大气营养盐沉降量,全年85%的TN沉降和71%的TP沉降集中在降雨期. 观测期间,千岛湖大气TN、TP干湿沉降入湖负荷分别估算为1 041.98和20.04 t/a,分别占千岛湖河道TN、TP输入的9.4%和8.3%. 研究显示,千岛湖大气氮磷沉降量显著低于长三角地区其他水体,但农耕、旅游等人类活动仍造成千岛湖大气营养盐沉降量明显升高.   相似文献   
5.
为揭示亚热带深水水库水环境变化特征及其驱动力,于2020年5月—2021年4月在千岛湖布设100个监测点,开展了为期1年的逐月水环境调查,分析营养盐时空分布特征及水质风险.结果表明:千岛湖水体总氮(TN)、总磷(TP)、叶绿素a(Chla)、浮游植物生物量(PB)等关键水环境指标时空差异大,全库年均TN浓度为0.92 mg/L,其中月均最大值出现在3月,为1.04 mg/L,最小值出现在8月,为0.78 mg/L,安徽段库区年均值为1.60 mg/L,而东南库湾年均值为0.83 mg/L;全库年均TP浓度为0.021 mg/L,其中月均最大值出现在7月,为0.033 mg/L,最小值出现在11月,为0.013 mg/L,安徽段库区年均值为0.052 mg/L,而东南库湾年均值为0.015 mg/L;全库年均Chla浓度为5.1μg/L,其中月均最大值出现在7月,为10.0μg/L,最小值出现在11月,为1.6μg/L,安徽段库区年均值为11.4μg/L,而东南库湾年均值为3.0μg/L;全库全年Chla浓度最大层PB平均值为2.396 mg/L,月均最大值为8.246 mg/L(8月)...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号