首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   2篇
  国内免费   2篇
安全科学   3篇
废物处理   14篇
环保管理   18篇
综合类   17篇
基础理论   16篇
污染及防治   34篇
评价与监测   12篇
社会与环境   10篇
灾害及防治   1篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   6篇
  2008年   10篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1983年   1篇
  1981年   2篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
1.
ABSTRACT: Erosion from construction sites significantly affects water quality in receiving streams. A rainfall simulator was used to evaluate the effectiveness of different methods for controlling erosion from construction sites. Erosion control methods investigated included dry and liquid applications of polyacrylamide (PAM), hydroseed, and straw mulch. Fertilizer was also applied to each plot to examine the effectiveness of the methods in reducing nutrient losses in runoff. Runoff samples were analyzed for total suspended solids (TSS), nitrate, total Kjeldahl nitrogen (TKN), ammonium, total phosphorus (TP), and orthophosphate. Among all treatments investigated, straw mulch was the most effective treatment for controlling TSS and nutrient losses during short term and long term simulations. The low liquid PAM (half the recommended PAM) treatment resulted in the highest reduction in runoff, TSS bound nitrogen, and total nitrogen (TN) concentrations and loadings. The study results indicate that a high application rate (twice the recommended rate) of PAM could actually increase runoff and TSS losses. At a low application rate, both liquid and dry PAM were effective in reducing TSS and nutrient losses in runoff. However, application of the liquid form of PAM to construction sites is more practical and perhaps more economical than applying the PAM in the dry form.  相似文献   
2.
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs.  相似文献   
3.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   

4.
Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactide (PLA) with different PHBV/PLA weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were prepared by melt compounding. Their mutual contributions in terms of thermal stability, flammability resistance, mechanical properties and rheological behavior were investigated. The study showed that the increase in PLA content in PHBV/PLA blends leads to enhanced properties. Consequently, thermal stability and flammability resistance were improved. Further, the rheological measurements indicated an increase in storage modulus and loss modulus of PHBV matrix by addition of PLA.  相似文献   
5.
In the present investigation, bulk and chemical partitioning of elements (Cu, Mn, Ni, Zn, Fe, Ca) together with organic matter as a loss in ignition in the Qarechay River bed sediments have been studied. The concentration of metals in Qarechay River bed sediments is governed by the geological units of the study area. The study of anthropogenic portion shows that a small proportion of elemental concentration belongs to this phase. However, Mn has a large portion of anthropogenic sources (43 %). Also, Mn has a share of 13.6 % in sulfide fractions. This result indicates that Mn is a highly mobile element and can easily enter the water column. The presence of Mn in sulfide fraction might be indicative of initial stages of conversion of oxidation state into reduction in Qarechay River. Share of metals in anthropogenic portion is in the following order: Mn (43 %)?>?Cu (19 %)?>?Zn (10 %)?>?Ni (3 %)?>?Fe (0 %). Organic metallic bonds are not significantly present in the study area. Geochemical index (I geo), pollution index (I poll), enrichment factor (EF), and pollution load index (PLI) values are indicative of a clean environment throughout the river course. These values are in well agreement with results of chemical partitioning data. Eventually, based on the results of chemical partitioning, regional standard of elements for Qarechay River bed sediments has been established.  相似文献   
6.
7.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   
8.
Delivering on the Promise of Agroforestry   总被引:1,自引:0,他引:1  
Agroforestry – the traditional practice of growing trees on farms for the benefit of the farm family and for the environment – was brought from the realm of indigenous knowledge into the forefront of agricultural research less than two decades ago. It was promoted widely as a sustainability-enhancing practice that combines the best attributes of forestry and agriculture. Based on principles of natural resource management and process-oriented research, agroforestry is now recognized as an applied science, that is instrumental in assuring food security, reducing poverty and enhancing ecosystem resilience at the scale of thousands of smallholder farmers in the tropics.Trees on farms provide both products and services: they yield food, fuelwood, fodder, timber and medicines, which farm families can use at home or take to market to bring in much-needed cash; they replenish organic matter and nutrient levels in soils and they help control erosion and conserve water. The International Centre for Research in Agroforestry, and its partners, are working to integrate the functions of trees with policy and institutional improvements that aim at facilitating wide-scale adoption by farmers.Two examples described in this paper are replenishing soil fertility in sub-Saharan Africa using short-term improved tree and shrub fallows and the results of agroforestry research to support significant land tenure policy in southeast Asia.Although just one option in sustainable land-use, science-based agroforestry has the potential to produce economically, socially and environmentally sound results for the billions of people who depend on this ancient practice and modern science.  相似文献   
9.
Characterization of the leaching behavior of wastes is a crucial step in the environmental assessment for reuse or disposal scenarios. The release of inorganic contaminants from waste materials is typically evaluated by tank leaching of continuously water-saturated material. However, materials, in many field or management scenarios, experience cyclic wetting and drying under varied environmental conditions (i.e. variable relative humidity, atmospheric CO2 or CO2 from biologic activities). During periods of storage in an unsaturated environment, many processes may occur that can influence the release potential and release rate of inorganic constituents. The research presented here was carried out to examine how the phenomena of carbonation during drying influence the release of inorganic contaminants from Portland cement-based materials during cyclic wetting and storage. Batch equilibrium leaching tests were used to determine constituent solubility as a function of pH. Dynamic leaching tests on monolithic material were carried out to determine the rate of constituent release as a function of leaching time and intermittent storage conditions. This paper presents the results observed for three typical waste constituents, arsenic, cadmium and lead.  相似文献   
10.
The neutral red retention assay has been proposed to determine the lysosomal membrane stability in immune cells. Nevertheless, this assay implies many examinations under a microscope at short time intervals and therefore the analysis of few samples. The present study proposes two more rapid, efficient, and sensitive sample analyses using flow cytometry method. Lysosomal presence and lysosomal membrane integrity (LMI) were evaluated on the three-spined stickleback, Gasterosteus aculeatus (L.), a well-described model fish species for aquatic ecotoxicology studies. After development of the two biomarkers, they were validated by ex vivo contamination with endosulfan and copper and by in situ sampling. These immunomarkers were clearly modulated by pollutants and their variations seemed to be correlated with leucocyte mortality. Thus, from a practical point of view, lysosomal presence and LMI may provide novel and efficient means of evaluating immune capacities and indicating the toxic effects of environmental pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号