首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
安全科学   1篇
环保管理   5篇
综合类   20篇
基础理论   11篇
环境理论   1篇
污染及防治   18篇
评价与监测   1篇
社会与环境   5篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2002年   5篇
  2000年   2篇
  1997年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
  1975年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
  1958年   1篇
  1932年   1篇
排序方式: 共有62条查询结果,搜索用时 16 毫秒
1.
2.
3.
4.
ABSTRACT: Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (≥45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors.  相似文献   
5.
Reducing pesticide loads in surface waters implies identifying the pathways responsible for the pollution. The current study documents the pesticide contamination of the river Zwester Ohm, a 4917-ha catchment in Germany with 41% of the land used for crop production. Discharges and concentrations of 19 pesticides were measured continuously at three locations for 15 mo. The load detected at the outlet of the catchment amounted to 9048 g a.i. The losses represent 0.22% of the pesticides applied by the farmers. The contamination showed a seasonal pattern following the pesticide application times. The wastewater treatment plant system (WWTPS) in the catchment (two wastewater treatment plants [WWTP], 14 combined sewer overflows (CSO), four CSO tanks) emits during dry weather periods purified sewage and during storm events sewage mixed with stormwater runoff into the river. The contribution by the WWTPS to the pesticide load was defined as point-source pollution (PSP). The load was dominated by PSP with at least 77% of the total pollution. No significant interdependencies between intrinsic properties of the pesticides, hydrometeorological factors, and the loads occurring in the stream could be found. Therefore, it is not possible to predict PSP for other catchments based on the results from this study. Whereas 65% of the total load entered the river via the WWTP, a portion of 12% was attributed to the CSO. The study points out that the influence of CSO on PSP should be taken into account in future catchment studies in areas with comparable agricultural structure.  相似文献   
6.
7.
8.
Gas chromatography coupled to low-resolution mass spectrometry with electron capture negative ionization as detection mode (GC-LRMS (ECNI)) has been compared to gas chromatography coupled to high-resolution mass spectrometry using electron ionization as detection mode (GC-HRMS (EI)) for determination of polybrominated diphenyl ethers (PBDEs) in biological samples. Extracts of 5.0 g plasma, serum and milk samples were analyzed using both methods. The GC-LRMS (ECNI) and GC-HRMS (EI) systems were found to be equally well suited for determination of PBDEs in the biological samples, as well as in standard solutions, with respect to response, detection limits and repeatability at the pg-level. The estimated limits of detection (LOD) in milk extracts ranged from 0.3-0.6 pg PBDE/g milk and 0.4-0.7 pg PBDE/g milk, for the GC-LRMS (ECNI) and GC-HRMS (EI) systems, respectively. The method repeatability including sample preparation was in the range 4.7-8.4% and 0.6-10% relative standard deviation (RSD) for the GC-LRMS (ECNI) and GC-HRMS (EI) systems, respectively.  相似文献   
9.
10.
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号