首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   3篇
污染及防治   3篇
社会与环境   1篇
  2021年   2篇
  2016年   1篇
  2010年   2篇
  2009年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In October 2008, the 5th Environmental Management for Sustainable Universities (EMSU) international conference was held in Barcelona, Spain. It dealt with the need to rethink how our higher educational institutions are facing sustainability. This special issue has been primarily derived from contributions to that conference. This issue builds upon related academic international publications, which have analysed how to use the critical position of universities to accelerate their pace of working to help to make the transition to truly SUSTAINABLE SOCIETIES!This issue focus is on the ‘softer’ issues, such as changes in values, attitudes, motivations, as well as in curricula, societal interactions and assessments of the impacts of research. Insights derived from the interplay of the ‘softer’ issues with the ‘harder’ issues are empowering academic leaders to effectively use leverage points to make changes in operations, courses, curricula, and research. Those changes are being designed to help their students and faculty build resilient and sustainable societies within the context of climate change, the Decade of Education for Sustainable Development (DESD), and the UN Millennium Development Goals (MDGs).The overall systems approach presented by Stephens and Graham provides a structured framework to systematize change for sustainability in higher education, by stressing on the one hand the need for “learning to learn” and on the other hand by integrating leadership and cultural aspects. The “niche” level they propose for innovative interactions between practitioners such as EMSU is exemplary developed by all of the other documents in this special issue. To highlight some of the key elements of the articles in this issue, there are proposals for new educational methods based in sustainability science, a set of inspirational criteria for SD research activities, new course ranking and assessment methods and results of psychological studies that provide evidence that participatory approaches are the most effective way to change values within university members in order to facilitate the development and sharing of new sustainability norms.  相似文献   
2.
3.
The thawing and subsequent decomposition of large stocks of soil organic carbon (SOC) currently stored in the northern circumpolar permafrost region are projected to result in a ‘positive’ feedback on global warming. The magnitude of this feedback can only be assessed with improved knowledge about the total size and geographic distribution of the permafrost SOC pool. This study investigates SOC storage in an under-sampled mountain permafrost area in the Russian High Altai. SOC stocks from 39 soil pits are upscaled using a GIS-based land cover classification. We found that the top 100 cm of soils in Aktru Valley and the adjacent Kuray Basin only holds on average 2.6 ± 0.6 kg C m−2 (95% confidence interval), of which only c. 1% is stored in permafrost. Global warming will result in an upward shift of alpine life zones, with new plant cover and soil development at higher elevations. As a result, this type of mountain permafrost area might act as a net C sink in the future, representing a ‘negative’ feedback on global warming.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01433-6) contains supplementary material, which is available to authorized users.  相似文献   
4.
5.
Focusing on the sustainability challenge, a growing number of Universities are redefining their core strategies in order to adapt to the real social needs and expectations of their stakeholders. Beyond integrating sustainability into the University's internal activities (curriculum, research, operations, etc.), the challenge seems to be integrating the University with the sustainable development paths of society. For the last 10 years the Technical University of Catalonia (UPC) has tackled this challenge through an overarching strategic plan. The latest strategy, UPC Sustainable Plan 2015 has adopted a different focus, which was designed through a participatory approach, involving many internal and external stakeholders.This work aims to use a conceptual framework based on systems transitions to assess the systems change potential of a University strategy, in this case, the sustainability strategy of UPC. The main objectives of this paper are: to present the sustainability strategy participatory design process and its outcomes at UPC; to analyse the strategy change potential through a new transition/systems renewal method that is proposed; and to compare it with the UPCs previous environmental strategy; The work concludes that the systems transition potential is currently higher with the new strategy and discusses the elements that explain this finding.  相似文献   
6.
7.
Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01381-1) contains supplementary material, which is available to authorized users.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号