首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
环保管理   1篇
综合类   2篇
基础理论   2篇
污染及防治   8篇
评价与监测   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有14条查询结果,搜索用时 140 毫秒
1.
Selective feticide is the procedure of choice when, in twin binovular pregnancy, only one of the fetuses is shown to be affected. As the probabilities for this condition are almost 1:2 when the genetic disease is due to homozygosity for two autosomal recessive genes, the problem is expected to occur frequently among the ever increasing number of couples seeking prenatal diagnosis of thalassaemia and the haemoglobinopathies. The present report is the first case of this condition and the ninth in the overall medical literature.  相似文献   
2.
Previous work has shown that arsenic can accumulate in drinking water distribution system (DWDS) solids (Lytle et~al., 2004) when arsenic is present in the water. The release of arsenic back into the water through particulate transport and/or chemical release (e.g. desorption, dissolution) could result in elevated arsenic levels at the consumers' tap. The primary objective of this work was to examine the impact of pH and orthophosphate on the chemical release (i.e. desorption) of arsenic from nine DWDS solids collected from utilities located in the Midwest. Arsenic release comparisons were based on the examination of arsenic and other water quality parameters in leach water after contact with the solids over the course of 168~hours. Results showed that arsenic was released from solids and suggested that arsenic release was a result of desorption rather than dissolution. Arsenic release generally increased with increasing initial arsenic concentration in the solid and increasing pH levels (in the test range of 7 to 9). Finally, orthophosphate (3 and 5 mg PO4/L) increased arsenic release at all pH values examined. Based on the study results, utilities with measurable levels of arsenic present in their water should be aware that some water quality changes can cause arsenic release in the DWDS potentially resulting in elevated levels at the consumer's tap.  相似文献   
3.
Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol–gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV–visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV–vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol–gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV–visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV–visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L?1) issued by the US Environmental Protection Agency.  相似文献   
4.
Electrochemical degradation (ECD) is a promising technology for in situ remediation of diversely contaminated environmental matrices by application of a low level electric potential gradient. This investigation, prompted by successful bench-scale ECD of trichloroethylene, involved development, parametric characterization and evaluation of a pilot-scale electrochemical reactor for degradation of calmagite, a sulfonated azo-dye used as a model contaminant. The reactor has two chambers filled with granulated graphite for electrodes. The system has electrical potential, current, conductivity, pH, temperature, water-level and flow sensors for automated monitoring. The reactor supports outdoor and fail-safe venting, argon purging, temperature regulation and auto-shutdown for safety. Treatment involves recirculating the contaminated solution through the electrode beds at small flow velocities mimicking low fluid-flux in groundwater and submarine sediments. The first phase of the investigation involved testing of the reactor components, its parametric probes and the automated data acquisition system for performance as designed. The results showed hydraulic stability, consistent pH behavior, marginal temperature rise (<5 degrees C) and overall safe and predictable performance under diverse conditions. Near complete removal of calmagite was seen at 3-10V of applied voltage in 8-10h. The effects of voltage and strength of electrolyte on degradation kinetics have been presented. Further, it was observed from the absorption spectra that as calmagite degrades over time, new peaks appear. These peaks were associated with degradation products identified using electrospray ionization mass spectrometry. A reaction mechanism for ECD of calmagite has also been proposed.  相似文献   
5.
Antibiotic-resistant bacteria and antibiotic resistance genes are in water bodies. UV/chlorination method is better to remove ARGs than UV or chlorination alone. Research on UV/hydrogen peroxide to eliminate ARGs is forthcoming. UV-based photocatalytic processes are effective to degrade ARGs. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (Clž·, ClOž·ž, Clž2·ž, žž·OH, and SOž4ž·€) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H2O2, UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes.  相似文献   
6.
The release of engineered nanomaterials (ENMs) into the biosphere will increase as industries find new and useful ways to utilize these materials. Scientists and engineers are beginning to assess the material properties that determine the fate, transport, and effects of ENMs; however, the potential impacts of released ENMs on organisms, ecosystems, and human health remain largely unknown. This special collection of four review papers and four technical papers identifies many key and emerging knowledge gaps regarding the interactions between nanomaterials and ecosystems. These critical knowledge gaps include the form, route, and mass of nanomaterials entering the environment; the transformations and ultimate fate of nanomaterials in the environment; the transport, distribution, and bioavailability of nanomaterials in environmental media; and the organismal responses to nanomaterial exposure and effects of nanomaterial inputs, on ecological communities and biogeochemical processes at relevant environmental concentrations and forms. This introductory section summarizes the state of knowledge and emerging areas of research needs identified within the special collection. Despite recent progress in understanding the transport, transformations, and fate of ENMs in model environments and organisms, there remains a large need for fundamental information regarding releases, distribution, transformations and persistence, and bioavailability of nanomaterials. Moreover, fate, transport, bioaccumulation, and ecological impacts research is needed using environmentally relevant concentrations and forms of ENMs in real field materials and with a broader range of organisms.  相似文献   
7.
A new technique for sampling fetal blood in twin pregnancies using two fetoscopes simultaneously is described. Two fetoscopes were inserted, one after the other, into both amniotic cavities and fetal blood samples were obtained from either the chorionic plate vessels or the umbilical cord insertion area. The observation of the bright tip of the second fetoscope behind the septum using the first fetoscope assured the successful entry of the two fetoscopes into the two different amniotic sacs. This technique was performed on 15 out of 17 patients. In all patients the fetuses were at risk of β-thalassemia major. Sampling was successful in all cases. Double simultaneous fetoscopy seems to be a safe and accurate technique without technical problems or complications. The simultaneous use of two fetoscopes opens new possibilities in intrauterine fetal surgery and research.  相似文献   
8.
Environmental Science and Pollution Research - Drinking water is of paramount importance for people’s health. Many outbreaks due to poor water quality are being recorded even nowadays....  相似文献   
9.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   
10.
Sources of mercury contamination in aquatic systems were studied in a comprehensive literature review. The results show that the most important anthropogenic sources of mercury pollution in aquatic systems are: (1) atmospheric deposition, (2) erosion, (3) urban discharges, (4) agricultural materials, (5) mining, and (6) combustion and industrial discharges. Capping and dredging are two possible remedial approaches to mercury contamination in aquatic systems, and natural attenuation is a passive decontamination alternative. Capping seems to be an economical and effective remedial approach to mercury-contaminated aquatic systems. Dredging is an expensive remedial approach. However, for heavily polluted systems, dredging may be more effective. Natural attenuation, involving little or no cost, is a possible and very economical choice for less contaminated sites. Proper risk assessment is necessary to evaluate the effectiveness of remedial and passive decontamination methods as well as their potential adverse environmental effects. Modeling tools have a bright future in the remediation and passive decontamination of mercury contamination in aquatic systems. Existing mercury transport and transformation models were reviewed and compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号