首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   1篇
污染及防治   1篇
  2019年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 147 毫秒
1
1.
The aim of this study is improving currently applied methodology for spatial disaggregation, as well as mapping air emission inventories by taking into account the auxiliary spatial data on population density. District heating infrastructure occurring in more populated areas changes distinctly the spatial distribution of estimated air emission; however, it does not change the initial estimate. That means the total, disaggregated value is constant. Considered sources of domestic combustion are located in the central part of the Silesian Metropolis, in the southern part of Poland. A large part of this area is strongly urbanized and supplied with heat (hot water) from the district heating system. Data on population density help to determine the area within which the dwellers use heat energy and hot water supplied by the heating infrastructure, apart from heating with small domestic boilers and stoves. This causes the domestic combustion’s emission impact within the distinguished area to be significantly lower in comparison to the official guidelines on air emission inventories. The important differences in spatial air emissions distributions calculated using a top-down approach are found for strongly urbanized areas supplied partly with heat and hot water from the district heating network. This fact should be taken into account when preparing detailed, high-resolution emission inventories for air regional and local quality modeling.

Implications: The spatial issues connected with elaboration of the high-resolution emission inventories are presented for the example of the populated area of the Silesian Metropolis (Poland). Spatial distribution of the population density is used to determine the area supplied with heat and hot water from the district heating system. It changes distinctly the spatial distribution of the air emission from small residential combustion sources.  相似文献   

2.

Anthropogenic emissions of carbon dioxide (CO2) and methane (CH4) in the atmosphere constitute an important component of the related carbon budget. The main source of anthropogenic CO2 is burning of fossil fuels, especially in densely populated areas. Similar emissions of CH4 are associated with the agricultural sector, coal mining, and other human activities, such as waste management and storage and natural gas networks supplying methane to large urban, industrial centers. We discuss several methods aimed at characterizing and quantifying atmospheric loads and fluxes of CO2 and CH4 in Krakow, the second largest city in Poland. The methods are based on atmospheric observations of mixing ratios as well as isotopic composition of the investigated gases. Atmospheric mixing ratios of CO2 and CH4 were measured using gas chromatography (GC) and cavity ring-down spectroscopy (CRDS). The isotopic composition of CO2 and CH4 was analyzed using isotope ratio mass spectrometry (IRMS), accelerator mass spectrometry (AMS), and CRDS techniques. These data, combined with auxiliary information characterizing the intensity of vertical mixing in the lower atmosphere (height of the nocturnal boundary layer [NBL] and atmospheric 222Rn concentration), were further used to quantify emission rates of CO2 and CH4 in the urban atmosphere of Krakow. These methods provide an efficient way of quantifying surface emissions of major greenhouse gases originating from distributed sources, thus complementing the widely used bottom-up methodology based on emission statistics.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号