首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   3篇
基础理论   1篇
污染及防治   1篇
  2020年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  1976年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
There are many challenges for developing and selecting methods to detect enteric viruses from food and environmental samples. Growth methods are rarely available and the viruses have a low infectious dose, so methods must be very sensitive as well as specific. This review discusses methods for sample preparation, detection and typing, outlining strengths and weaknesses for different protocols. Enteric viruses are very stable in the environment and the development of effective detection methods is an important step towards reducing contamination of foods and the environment.  相似文献   
2.

Carbon capture and storage (CCS) is an economically attractive strategy for avoiding carbon dioxide (CO2) emissions from, e.g., power plants to the atmosphere. The combination of CCS and biomass combustion would result in a reduction of atmospheric CO2, or net negative emissions, as plant growth is a form of sequestration of atmospheric carbon. Carbon capture can be achieved in a variety of ways, one of which is chemical looping. Chemical-looping combustion (CLC) and chemical looping gasification (CLG) are two promising technologies for conversion of biomass to heat and power or syngas/methane with carbon capture. There have been significant advances made with respect to CLC in the last two decades for all types of fuel, with much less research on the gasification technology. CLG offers some interesting opportunities for production of biofuels together with carbon capture and may have several advantages with respect to the bench mark indirect gasification process or dual-bed fluidized bed (DFBG) in this respect. In CLG, an oxygen carrier is used as a bed material instead of sand, which is common in indirect gasification, and this could have several advantages: (i) all generated CO2 is present together with the syngas or methane in the fuel reactor outlet stream, thus in a concentrated stream, viable for separation and capture; (ii) the air reactor (or combustion chamber) should largely be free from trace impurities, thus preventing corrosion and fouling in this reactor; and (iii) the highly oxidizing conditions in the fuel reactor together with solid oxide surfaces should be advantageous with respect to limiting formation of tar species. In this study, two manganese ores and an iron-based waste material, LD slag, were investigated with respect to performance in these chemical-looping technologies. The materials were also impregnated with alkali (K) in order to gauge possible catalytic effects and also to establish a better understanding of the general behavior of oxygen carriers with alkali, an important component in biomass and biomass waste streams and often a precursor for high-temperature corrosion. The viability of the oxygen carriers was investigated using a synthetic biogas in a batch fluidized bed reactor. The conversion of CO, H2, CH4, and C2H4 was investigated in the temperature interval 800–950 °C. The reactivity, or oxygen transfer rate, was highest for the manganese ores, followed by the LD slag. The conversion of C2H4 was generally high but could largely be attributed to thermal decomposition. The K-impregnated samples showed enhanced reactivity during combustion conditions, and the Mangagran-K sample was able to achieve full conversion of benzene. The interaction of the solid material with alkali showed widely different behavior. The two manganese ores retained almost all alkali after redox testing, albeit exhibiting different migration patterns inside the particles. LD slag lost most alkali to the gas phase during testing, although some remained, possibly explaining a small difference in reactivity. In summary, the CLC and CLG processes could clearly be interesting for production of heat, power, or biofuel with negative CO2 emissions. Manganese ores are most promising from this study, as they could absorb alkali, giving a better conversion and perhaps also inhibiting or limiting corrosion mechanisms in a combustor or gasifier.

  相似文献   
3.
Visual Determination of the Opacity of Emissions from Stationary Sources (Method 9) is a reference method established by U.S. Environmental Protection Agency (EPA) to quantify plume opacity. However, Method 9 relies on observations from humans, which introduces subjectivity. In addition, it is expensive to teach and certify personnel to evaluate plume opacity on a semiannual basis. In this study, field tests were completed during a "smoke school" and a 4-month monitoring program of plumes emitted from stationary sources with a Method 9 qualified observer to evaluate the use of digital photography and two computer algorithms as an alternative to Method 9. This Digital Optical Method (DOM) improves objectivity, costs less to implement than Method 9, and provides archival photographic records of the plumes. Results from "smoke school" tests indicate that DOM passed six of eight tests when the sun was located in the 140 degrees sector behind one of the three cameras, with the individual opacity errors of 15% or less and average opacity errors of 7.5% or less. DOM also passed seven of the eight tests when the sun was located in the 216 degrees sector behind another camera. However, DOM passed only one of the eight tests when the sun was located in the 116 degrees sector in front of the third camera. Certification to read plume opacity by a "smoke reader" for 6 months requires that the "smoke reader" pass one of the smoke school tests during smoke school. The average opacity errors and percentage of observations with individual opacity errors above 15% for the results obtained with DOM were lower than those obtained by the smoke school trainees with the sun was located behind the camera, whereas they were higher than the smoke school trainee results with the sun located in front of the camera. In addition, the difference between plume opacity values obtained by DOM and a Method 9 qualified observer, as measured in the field for two industrial sources, were 2.2%. These encouraging results demonstrate that DOM is able to meet Method 9 requirements under a wide variety of field conditions and, therefore, has potential to be used as an alternative to Method 9.  相似文献   
4.
Shellfish are an important cause of foodborne viral illness. Consumer-friendly cooking recommendations for shellfish could improve food safety and decrease the risk for infection from contaminated products. Thermal inactivation parameters were established for hepatitis A virus (HAV) in mussels and validated with cooking experiments. Steaming for only 2–5 min was not sufficient to inactivate HAV in mussels in all layers of a steamer. Steaming mussels for 6 min was sufficient to inactivate HAV in all layers. These cooking guidelines produce shellfish with a reduced risk for foodborne virus transmission.  相似文献   
5.
Movement and feeding were studied in a population of red sea urchins, Strongylocentrotus franciscanus (Agassiz, 1863), found within and immediately seaward of a kelp forest offshore from Santa Cruz, California, USA. Mean sea urchin movements varied from 7.5 cm/day inside the kelp forest to over 50 cm/day at 15 and 100 m outside the kelp forest. The percentage of sea urchins feeding decreased from 66% inside the kelp forest to 16 and 15% at 15 and 100 m outside the kelp forest. These data indicate that movement by these sea urchins is a response to a low food supply.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号