首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   2篇
废物处理   5篇
环保管理   1篇
综合类   3篇
  2023年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2009年   2篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Journal of Material Cycles and Waste Management - With an attempt to utilize bio-waste, oil palm empty fruit bunches (OPEFB) were investigated as feedstock for biogas production. Bench scale...  相似文献   
2.
3.
The tapioca processing industry is considered to be one of the largest food processing industrial sectors in Thailand. However, the growth of the tapioca starch industry has resulted in heavy water pollution as it generates large amount of solid waste and wastewater with high organic content. This study explores the applicability of clean technology options to improve the environmental performance of tapioca starch-processing plants in Thailand. Eight Tapioca starch plants were selected for an exclusive analysis of the dynamics of clean technology development and adoption. Proposed options mainly involve water reduction and energy conservation. These include reuse and recycling of water, technology modification in the production process, and use of biogas to substitute fuel oil for burners. Implementation of these proposed alternatives to real companies shows that the reduction of starch loss, and water and fuel cost savings can be achieved.  相似文献   
4.
The feasibility of the 3R concept tends to increase the reduction, reuse, and recycling of industrial waste. In this study, we investigated the feasibility of 3R methods to cope with industrial waste generated from high-density polyethylene production in Thailand. The sources and types of waste and existing waste management practices were identified. The four sources of waste generation that we identified were: (1) production, (2) packaging, (3) wastewater treatment, and (4) maintenance, distributed as 47, 46, 4, and 3 %, respectively. The main options for management were: sales to recycling plants (60.41 %), reuse and recycling (25.93 %), and industrial-waste landfilling (10.47 %). After 3R options were introduced, the proposed alternatives were found to be capable of reducing the amount of waste by 33.88 %. The results of life-cycle assessment (LCA) were useful for considering the environmental impact where 3R options were adopted. We also found that net greenhouse gas (GHG) emissions and other environmental impacts could be reduced when industrial waste diverted from landfill is used as alternative fuel. However, the cost of waste disposal seems to be the greatest obstacle for the adoption of 3R methods in Thailand.  相似文献   
5.
The objective of this research was to evaluate possibility of utilizing Acacia leaves (A. mangium and A. auriculiformis), which is an agro-industrial waste from the pulp and paper industry. The effects of alkaline pre-treatment and co-digestion with Napier grass for the enhancement of biogas production from Acacia leaf waste (ALW) were investigated. Six continuous stirred tank reactors with a working volume of 5 L were carried out at the laboratory scale. The results showed that pre-treatment of Acacia leaf waste (pretreated ALW) by soaking in 3 % NaOH for 48 h increased the biogas and methane productivity to 0.200 and 0.117 m3/kgVSadded compared to 0.098 and 0.048 m3/kgVSadded of raw ALW digestion, respectively. Meanwhile, the co-digestion of Acacia leaves with different proportions of Napier grass at ratios of 1:1–1:3 in volatile solid basis also increased the production of biogas and its productivity. The maximum gas production yields of 0.424 and 0.268 m3/kgVSadded for biogas and methane were obtained at 1:3 ratio. This finding affirms the potential of ALW and its possibility to use as biogas feedstock in both single and co-substrate with Napier grass.  相似文献   
6.
The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is the conventional primary treatment for O&G removal prior to biological treatments. In this study, electrocoagulation (EC) was adopted to treat the biodiesel wastewater. The e ects of initial pH, applied voltage, and reaction time on the EC process for the removal of COD, O&G, and suspended solids (SS) were investigated using one factor at a time experiment. Furthermore, the Box-Behnken design, an experimental design for response surface methodology (RSM), was used to create a set of 15 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coe cients were developed to describe the pollutant removals. The experimental results show that EC could e ectively reduce COD, O&G, and SS by 55.43%, 98.42%, and 96.59%, respectively, at the optimum conditions of pH 6.06, applied voltage 18.2 V, and reaction time 23.5 min. The experimental observations were in reasonable agreement with the modeled values.  相似文献   
7.
The pH-dependent release of cadmium, copper, and lead from soil materials was studied by use of a stirred flow cell to quantify their release and release rates, and to evaluate the method as a test for the bonding strength and potential mobility of heavy metals in soils. Soil materials from sludge-amended and nonamended A horizons from a Thai coarse-textured Kandiustult and a Danish loamy Hapludalf were characterized and tested. For each soil sample, release experiments with steady state pH values in the range 2.9 to 7.1 and duration of 7 d were performed. The effluent was continuously collected and analyzed. Release rates and total releases were higher for the Hapludalf than the Kandiustult and higher for the sludge-amended soils than the nonamended soils. With two exceptions the relative release rates (release rate/total content of metal in soil) plotted vs. steady state pH followed the same curves for each metal, indicating similar bonding strengths. These curves could be described by a rate expression of the form: relative release rate = k[H+]a, with specific a (empirical constant) and k (rate constant) parameters for each metal demonstrating that metal release in these systems can be explained by proton-induced desorption and dissolution reactions. With decreasing pH, pronounced increases in release rates were observed in the sequence cadmium > lead > copper, which express the order of metal lability in the soils. The flow cell system is useful for comparison of metal releases as a function of soil properties, and can be used as a test to rank soils with respect to heavy metal leaching.  相似文献   
8.
Measurements and monitoring of volatile organic compounds (VOCs) have been conducted in the metropolitan Bangkok. However, in-vehicle levels of VOCs are still lacking. This study investigated VOCs concentrations in four public transportation modes in Bangkok, Thailand during two rush hour periods (7:00-9:00 a.m. and 4:00-7:00 p.m.). The four modes included an air-conditioned bus (A/C bus), non-air-conditioned bus (non-A/C bus), electric sky train, and a passenger boat traveling along the canal. Comparison among three important bus routes was also studied. In-vehicle air samples were collected using charcoal sorbent tubes and then analyzed by a gas chromatography-mass spectrometer. Results showed that the transportation modes significantly influenced the abundance of in-vehicle benzene, toluene, ethylbenzene, and m,p-xylene (BTEX). Median concentrations of BTEX were 11.7, 103, 11.7, and 42.8 μg/m3 in A/C bus; 37.1, 174, 14.7, and 55.4 μg/m3 in non-A/C bus; 2.0, 36.9, 0.5, and 0.5 μg/m3 in sky train; and 3.1, 58.5, 0.5, and 6.2 μg/m3 in boat, respectively. Wilcoxon rank sum test indicated that toluene and m,p-xylene in the sky trains were statistically lower than that in the other three modes at a p-value of 0.05. There were statistical differences in TEX concentrations among the bus routes in the non-A/C buses. In addition, the benzene to toluene ratios implied that tail-pipe emissions were important contributor to the abundance of in-vehicle VOCs.  相似文献   
9.
Journal of Material Cycles and Waste Management - The circularity of plastic packaging waste (PPW) material via recycling is critical to its circular economy towards sustainability and carbon...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号