首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   1篇
基础理论   4篇
  2023年   1篇
  2022年   1篇
  2019年   3篇
排序方式: 共有5条查询结果,搜索用时 12 毫秒
1
1.
Biomethane production through biogas upgrading is a promising renewable energy for some industries which could be part of the equilibrium needed with fossil fuels consumption to achieve a sustainable society. This paper presents a comprehensive list of biogas upgrading technologies focused on carbon dioxide removal as well as recent advances reported by researcher with wide expertise in this topic. Additionally, an extensive costs–performance comparison among the technologies studied is discussed. Among the different alternatives, chemical scrubbing stood out to achieve high biomethane purities while cryogenic technologies proved to be effective against methane losses. Regarding the different costs, water scrubbing and membrane separation seem to be the most affordable techniques.  相似文献   
2.
Environmental Chemistry Letters - The replacement of traditional and non-renewable resources by shifting towards renewable-based strategies is a strategy implemented by the European Union...  相似文献   
3.
Environmental Chemistry Letters - Acid mine drainage induced by the mining industry causes environmental and economic issues. Acid mine drainage contains mainly metals such as Fe, Al, Cu, Ca, Mg,...  相似文献   
4.
Environmental Chemistry Letters - The scarcity of fossil fuels and the worldwide pollution have led the scientific community to seek renewable energy alternatives. In particular, biogas has become...  相似文献   
5.

The adverse effects of climate change calls for the rapid transformation of manufacturing processes to decrease the emissions of carbon dioxide. In particular, a lower carbon footprint can be achieved by capturing carbon dioxide at the site of emission. Here we review the use of industrial effluents, waste and residues to capture carbon dioxide. Waste include steelmaking slag, municipal solid waste incinerator ashes, combustion fly ash, black liquor, paper mill waste, mining waste, cement waste, construction and demolition waste, waste from the organic industry, and flue gas desulfurization gypsum waste. Capture capacities range from 2 to 800 kg of carbon dioxide per ton of waste, depending on processes, waste type and conditions. Cement waste and flue gas desulfurization gypsum waste show the highest capture capacity per ton of waste.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号