首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
废物处理   1篇
环保管理   1篇
综合类   2篇
基础理论   10篇
污染及防治   14篇
评价与监测   10篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2016年   3篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1996年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0–25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC2, PC3 and PC4) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.  相似文献   
2.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   
3.
The water bodies of Lucknow, Unnao and Kanpur (U.P.), India polluted through various point and non point sources were found to be either eutrophic or oligotrophic in nature. These water bodies supported a great number of algal diversity, which varied seasonally depending upon the physico-chemical properties of water. Further, the water bodies polluted through non point sources supports diverse algal species, while the water bodies polluted through point sources supports growth of tolerant blue green algae. High biomass producing algal species growing in these water bodies have accumulated significant amount of metals in their tissues. Maximum amount of Fe was found accumulated by species of Oedogonium sp. II (20,523.00 mug g(-1) dw) and Spirogyra sp. I (4,520.00 mug g(-1) dw), while maximum Chromium (Cr) was found accumulated in Phormedium bohneri (2,109.00 mug g(-1) dw) followed by Oscillatoria nigra (1,957.88 mug g(-1) dw) and Oedogonium sp. I (156.00 mug g(-1) dw) and Ni in Ulothrix sp. (495.00 mug g(-1) dw). Results showed that some of these forms growing in polluted environment and accumulating high amounts of toxic metals may be used as bioindicator species, however, their performance in metal contaminated water under different ecological niche is to be ascertained.  相似文献   
4.
Arsenic (As) is a widespread environmental and food chain contaminant and class I, non-threshold carcinogen. Plants accumulate As due to ionic mimicry that is of importance as a measure of phytoremediation but of concern due to the use of plants in alternative medicine. The present study investigated As accumulation in native plants including some medicinal plants, from three districts [Chinsurah (Hoogly), Porbosthali (Bardhman), and Birnagar (Nadia)] of West Bengal, India, having a history of As pollution. A site-specific response was observed for Specific Arsenic Uptake (SAU; mg kg(-1) dw) in total number of 13 (8 aquatic and 5 terrestrial) collected plants. SAU was higher in aquatic plants (5-60 mg kg(-1) dw) than in terrestrial species (4-19 mg kg(-1) dw). The level of As was lower in medicinal plants (MPs) than in non-medicinal plants, however it was still beyond the WHO permissible limit (1 mg kg(-1) dw). The concentration of other elements (Cu, Zn, Se, and Pb) was found to be within prescribed limits in medicinal plants (MP). Among the aquatic plants, Marsilea showed the highest SAU (avg. 45 mg kg(-1) dw), however, transfer factor (TF) of As was the maximum in Centella asiatica (MP, avg. 1). Among the terrestrial plants, the maximum SAU and TF were demonstrated by Alternanthera ficoidea (avg. 15) and Phyllanthus amarus (MP, avg. 1.27), respectively. In conclusion, the direct use of MP or their by products for humans should not be practiced without proper regulation. In other way, one fern species (Marsilea) and some aquatic plants (Eichhornia crassipes and Cyperus difformis) might be suitable candidates for As phytoremediation of paddy fields.  相似文献   
5.
Rice is a major food crop throughout the world; however, accumulation of toxic metals and metalloids in grains in contaminated environments is a matter of growing concern. Field experiments were conducted to analyze the growth performance, elemental composition (Fe, Si, Zn, Mn, Cu, Ni, Cd and As) and yield of the rice plants (Oryza sativa L. cv. Saryu-52) grown under different doses of fly-ash (FA; applied @ 10 and 100 tha(-1) denoted as FA(10) and FA(100), respectively) mixed with garden soil (GS) in combination with nitrogen fertilizer (NF; applied @ 90 and 120 kg ha(-1) denoted as NF(90) and NF(120), respectively) and blue green algae biofertilizer (BGA; applied @ 12.5 kg ha(-1) denoted as BGA(12.5)). Significant enhancement of growth was observed in the plants growing on amended soils as compared to GS and best response was obtained in amendment of FA(10)+NF(90)+BGA(12.5). Accumulation of Si, Fe, Zn and Mn was higher than Cu, Cd, Ni and As. Arsenic accumulation was detected only in FA(100) and its amendments. Inoculation of BGA(12.5) caused slight reduction in Cd, Ni and As content of plants as compared to NF(120) amendment. The high levels of stress inducible non-protein thiols (NP-SH) and cysteine in FA(100) were decreased by application of NF and BGA indicating stress amelioration. Study suggests integrated use of FA, BGA and NF for improved growth, yield and mineral composition of the rice plants besides reducing the high demand of nitrogen fertilizers.  相似文献   
6.
Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0–15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015?±?3,373, 236?±?286, 103?±?192, 29.8?±?6.04, and 141?±?270 mg kg?1, respectively. Free metal ion activity, viz., pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+, as estimated by the Baker soil test was 9.37?±?1.89, 13.1?±?1.96, 12.8?±?1.89, 11.9?±?2.00, and 11.6?±?1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley–Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+ to the extent of 59, 56, 46, 52, and 51 %, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.  相似文献   
7.
Seeds of Cicer arietinum L. plants are edible and a valuable source of protein. Accumulation of toxic metals in the edible part of the plant, grown in fields close to fly-ash (FA) landfills, may pose a threat to human health. In the present study, the effects of FA and its amendments with different ameliorants viz., garden soil (GS), press mud (PM) and saw dust (SD), on total soluble protein contents, amino acid composition and metal accumulation in seeds were investigated in var. CSG-8962 and var. C-235 of C. arietinum. Plants accumulated adequate amounts of essential metals viz. Fe, Cu, Zn in seeds, while the toxic metals such as Cd and Cr were taken up in smaller quantities. The accumulation of Cr and Cd was less in var. C-235 than var. CSG-8962. Amendment of FA with PM enhanced the amount of soluble protein and amino acids in both varieties and was found to be superior among all tested ameliorants. Both quantitative and qualitative analysis of amino acids showed better response in var. C-235 as compared to var. CSG-8962. Thus var. C-235 seems to be suitable for cultivation in FA contaminated areas due to more accumulation of essential metals and less accumulation of toxic metals in seeds. Application of PM may further improve the growth of plants and nutritional quality of seeds.  相似文献   
8.
Rapid urban development has led to a critical negative impact on water bodies flowing in and around urban areas. In the present study, 25 physiochemical and biological parameters have been studied on water samples collected from the entire section of a small river originating and ending within an urban area. This study envisaged to assess the water quality status of river body and explore probable sources of pollution in the river. Weighted arithmetic water quality index (WQI) was employed to evaluate the water quality status of the river. Multivariate statistical techniques namely cluster analysis (CA) and principal component analysis (PCA) were applied to differentiate the sources of variation in water quality and to determine the cause of pollution in the river. WQI values indicated high pollution levels in the studied water body, rendering it unsuitable for any practical purpose. Cluster analysis results showed that the river samples can be divided into four groups. Use of PCA identified four important factors describing the types of pollution in the river, namely (1) mineral and nutrient pollution, (2) heavy metal pollution, (3) organic pollution, and (4) fecal contamination. The deteriorating water quality of the river was demonstrated to originate from wide sources of anthropogenic activities, especially municipal sewage discharge from unplanned housing areas, wastewater discharge from small industrial units, livestock activities, and indiscriminate dumping of solid wastes in the river. Thus, the present study effectively demonstrates the use of WQI and multivariate statistical techniques for gaining simpler and meaningful information about the water quality of a lotic water body as well as to identify of the pollution sources.  相似文献   
9.
We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles(Fe_2O_3-NPs) in Raphanus sativus(radish).Fe_2O_3-NPs retarded the root length and seed germination in radish.Ultrathin sections of treated roots showed subcellular localization of Fe_2O_3-NPs,along with the appearance of damaged mitochondria and excessive vacuolization.Flow cytometric analysis of Fe_2O_3-NPs(1.0 mg/m L) treated groups exhibited 219.5%,161%,120.4% and 161.4% increase in intracellular reactive oxygen species(ROS),mitochondrial membrane potential(ΔΨm),nitric oxide(NO) and Ca2+influx in radish protoplasts.A concentration dependent increase in the antioxidative enzymes glutathione(GSH),catalase(CAT),superoxide dismutase(SOD) and lipid peroxidation(LPO) has been recorded.Comet assay showed a concentration dependent increase in deoxyribonucleic acid(DNA) strand breaks in Fe_2O_3-NPs treated groups.Cell cycle analysis revealed 88.4% of cells in sub-G1 apoptotic phase,suggesting cell death in Fe_2O_3-NPs(2.0 mg/m L) treated group.Taking together,the genotoxicity induced by Fe_2O_3-NPs highlights the importance of environmental risk associated with improper disposal of nanoparticles(NPs) and radish can serve as a good indicator for measuring the phytotoxicity of NPs grown in NP-polluted environment.  相似文献   
10.
Furfural is an industrial compound used as a process intermediate and as a solvent; it poses a potential inhalation hazard in occupational settings. This study was carried out to find furfural-induced immunotoxicity in Wistar rat following inhalative exposure. The weights of thymus and lymph node were found decreased, while the weights of the liver and the adrenal gland were significantly increased following furfural exposure. Delayed-type hypersensitivity response was found decreased in furfural vapors-exposed animals when compared to that of control animals. The phagocytic index of peritoneal and alveolar exudates showed significant decrease and was most prominent (90%) in 30 days-exposed groups. The number of anti-rat anti-sheep red blood cell immunoglobulin M plaque forming cells of spleen got decreased in furfural-exposed groups in comparison to control. Taken together, this study indicates that inhalation of furfural induces immunotoxic manifestations that could lead to severe immunological disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号