首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   1篇
基础理论   3篇
污染及防治   1篇
社会与环境   1篇
  2022年   2篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Environmental Chemistry Letters - The application of natural biopolymers such as polysaccharides for the fabrication of bio-based membranes has recently attracted attention for CO2...  相似文献   
2.
Environment, Development and Sustainability - Forward and reverse supply chains are one of the most important issues in supply chain management. These kinds of supply chain networks include a...  相似文献   
3.
Since the US Environmental Protection Agency (US EPA) launched its “green remediation” program and EU member states began to reassess their national regulations for environmental remediation in order to reach a Europe‐wide consensus on policy and standards, the need and interest for sustainable remediation of contaminants from brownfields has grown considerably. Concomitantly, the ability to calculate and assess the suitability as well as the environmental footprints and associated risks of a growing number of remediation techniques has become a priority. The authors quantitatively evaluate the differences between various remediation techniques, and for this purpose, a number of ex situ and in situ remediation techniques are adapted to model 21 remediation scenarios for two contaminated sites in the Gothenburg region of Sweden: the Bohus Varv site on the Göta älv river bank and the Hexion site in Mölndal. A wide range of quantitative results for these models are presented, compared, and analyzed. Based on the results from both projects, it is concluded that: (1) remediation techniques requiring long distance residual transportation have significant footprints, except the transportation of contaminated residuals by train due to Swedish energy production conditions; (2) residual transportation by ship results in much higher SOx, NOx, and particle releases compared to the other alternatives; and (3) residual transporation by truck results in high accident risks. Finally, activities powered by electricity result in a reduced footprint compared to activities powered by fossil fuels, considering Swedish energy production conditions. The authors conducted a cross‐benefit analysis of SiteWiseTM applications which recognizes its potential as a tool for presenting life cycle assessment analyses with appropriate system boundary definitions and an easy inventory analysis process. Results from this tool provide valuable support to decision makers aiming at more sustainable remediation. © 2013 Wiley Periodicals, Inc.  相似文献   
4.
In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES.  相似文献   
5.

The presence of chemicals in laboratories and research centers exposes the staff working at such indoor environment to health risks. In this piece of research, a study was performed on the indoor environment of the Center for Environmental Engineering Research at Sahand University of Technology (Tabriz, Iran). For this purpose, the parameters affecting the dispersion of volatile organic compounds (VOCs), including ventilation rate, room temperature, pollution emission time, venting location, air flow regime within the indoor environment, and the number of vents, were simulated via CFD modeling. The CFD modeling was performed three-dimensionally in unsteady state. In case of turbulent flow within the indoor environment, k–ε turbulence model was used to obtain air velocity profile. Experimental data was used to validate the model. Results of the present research showed that when the venting location is on the ceiling, pollution concentration of 25 ppm can be achieved at some low temperature under a particular set of conditions. However, when the venting location was on the walls close to the pollution source, concentrations as low as 5 ppm and lower were observed within the laboratory indoor environment.

  相似文献   
6.
In the present study, the prediction accuracy of a dynamic one-equation sub-grid scale model for the large eddy simulation of dispersion around an isolated cubic building is investigated. For this purpose, the localized dynamic $k_\mathrm{SGS} $ -equation model (LDKM) is employed and the results are compared with the available experimental data and two other classic sub-grid scale models, namely, standard Smagorinsky–Lilly model (SSLM) and dynamic Smagorinsky–Lilly model (DSLM). It is shown that the three SGS models give results in good agreement with experiment. However, near the ground level of the leeward wall, dimensionless time-averaged concentration, $\langle K\rangle $ , profile is not quite similar to the experimental data. It is also demonstrated that the LDKM predicts the values of $\langle K\rangle $ on the roof, leeward and side walls more acceptably than the SSLM and DSLM. Whereas, the streamwise elongation of time-averaged structures of the plume shape is more over-estimated with the LDKM than with the other two SGS models. In terms of numerical difficulty, the LDKM is found to be stable and computationally reasonable. In addition, it does not suffer from a flow dependent constant such as the Smagorinsky coefficient employed in the SSLM model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号