首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   1篇
废物处理   3篇
环保管理   2篇
综合类   3篇
基础理论   1篇
污染及防治   3篇
社会与环境   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
In this paper we deal with the problem of identifying environmental principles for the design and operation of supply chains. The operations that are included in supply chains are briefly described along with the approaches that are applied in order to improve their environmental performance. A background of environmental principles for achieving eco-efficiency and building of environmentally friendly organizational systems is presented and emphasis is put on the application of such principles “from cradle to grave”. Then, environmental principles applicable to particular objects of logistics networks planning are identified and commented upon. In addition, selective case studies from the literature, which show the applicability of the formulated principles and their relevance to practice, are discussed. The paper concludes with some remarks regarding the benefits for companies and societies, in general, that occur as a result of the application of the formulated principles.  相似文献   
2.
3.
The purpose of this study was to optimize the alkaline, ultrasonication, and thermal pretreatment in order to enhance the solubilization of food waste (FW) for the production of volatile fatty acids, hydrogen, and methane in thermophilic batch anaerobic digestion. Initially, the effect of pretreatment techniques in the acidogenic phase was studied, and the optimal combinations of different conditions were determined. It was found that each pretreatment technique affected food waste solubilization differently. Alkaline pretreatment increased hydrogen yield in the acidogenic sludge by four times over control. COD solubilization was increased by 47 % when FW pre-heated at 130 °C for 60 min. Ultrasonication at 20 kHz and 45 min reduced processing time to 38 h from the 60–80 h needed in normal operation. Response surface methodology (RSM) was used to optimize a combination of alkaline, ultrasonication, and thermal pretreatment. Optimized conditions were applied to methanogenic single-stage thermophilic AD process, and their impact on biogas production was monitored. Results showed that FW heated at 130 °C for 50 min geminates biogas production compared to control experiment. In conclusion, a short thermal pretreatment regime could significant affect biogas production in single-stage thermophilic AD.  相似文献   
4.
The purpose of this study was to investigate the climate change impacts, vulnerability and adaptive capacity of the electrical energy sector in Cyprus. Spatial vulnerability of the island was assessed using the degree-day indicator to investigate heating and cooling demands in the near future using daily temperature projections from regional climate models (RCMs). Using daily electrical energy consumption data for the present climate, an impact model linking consumption and temperature was constructed and this relationship was projected to the future climate using the data from the RCMs and assuming the same technology use. Our impact model results showed that for the period between November and April (‘cold period’), a decreasing trend in electrical energy consumption is evident due to warmer conditions in the near future, while for the period between May and October (‘warm period’), an increasing trend in electricity consumption is evident as warmer conditions dominate by 2050. Regarding the spatial vulnerability assessment, the cooling degree-day indicator testified that major increases in cooling demand, between 100 and 200 degree-days, are expected in inland and southern regions during the summer in the near future. In addition, increases of about 20–50 degree-days are anticipated during autumn. Conversely, energy demand for heating is projected to decrease during spring and winter, especially in the higher elevation parts of the island. More precisely, reductions of about 30–75 degree-days are projected during spring, while greater reductions of about 60–90 degree-days are expected during winter in heating demand, especially for in the near future. The ability of the energy sector to adapt and follow these changes was deemed to be satisfactory reducing the overall vulnerability of the sector to future climate change.  相似文献   
5.
Tourism is a vital sector of Cyprus economy, attracting millions of tourists every year and providing economic growth and employment for the country. The aim of this study was to investigate the impacts of projected climate change in the tourism industry in Cyprus (Republic of Cyprus) using both “Tourism Climate Index” (TCI) and “Beach Climate Index” (BCI). TCI refers to tourism activities mainly related to sightseeing, nature-based tourism, and religious tourism etc., while BCI represents beach tourism that constitutes 85 % of tourism activities in Cyprus. The projections of climate change impacts in tourism are performed for 2071–2100 period, using regional climate model output employing the A1B greenhouse gas emissions scenario. The 1961–1990 period is used as the control run to compare the respective results of the future projections. The significant warming anticipated in the distant future (increases in annual and summer temperatures close to 4 °C) will have adverse impacts on Cyprus tourism industry regarding sightseeing tourism. TCI results for the distant future period show only acceptable conditions for general tourism activities during summer in contrast with the good/very good conditions in the present climate. Conversely, this type of tourism seems to be benefited in shoulder seasons, i.e., during spring and autumn; TCI and hence tourist activities improve in the distant future in relation to the present climate. On the other hand, concerning beach tourism, future projections indicate that it will not be negatively affected by future climate change and any changes will be positive.  相似文献   
6.
The influence of socioeconomic factors, such as population and rapid economic growth, and the change of consumption and living patterns make waste management in Singapore, a complex issue. Due to limited land and resources, the solid waste management scheme requires a comprehensive approach. Therefore, system dynamics (SD) modeling was applied to assess alternative strategies for solid waste management by interconnecting landfill capacity and recycling efficiency with reference to the projection on waste generation. Nine different scenarios were investigated to identify the best approach to maintain environmental sustainability without inhibiting the economic growth. Four subsystems (i.e., population, economy, waste recycling, and waste disposal) have been incorporated into the SD model to broaden the effectiveness of the waste management system. Research findings revealed that a high economic pattern and a high recycling rate are recommended to satisfy the requirements for economic growth and environmental sustainability while extending landfill capacity for waste disposal. Even though the balance of expenditure could be increased by the high recycling rate, it meets the need for long-term incineration and landfill planning.  相似文献   
7.
An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section.  相似文献   
8.
Source separation sanitation systems have attracted more and more attention recently.However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid–gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition,this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective.  相似文献   
9.
The need to include environmental criteria in the analysis of supply chains is increasingly recognized as a result both of limitations that are posed by legislation and regulations as well as of various motivations that a company may have. A decision model is proposed in this paper based on environmental performance indicators, which may support decision making in the case of supply chains in the presence of environmental considerations. The model uses a set of principles applicable to supply chains design and operation available from previous research work.  相似文献   
10.
The content of total arsenic and arsenic compounds in the dominant seaweed species in the Thermaikos Gulf, Northern Aegean Sea was determined in samples collected in different seasons. Total arsenic was determined by acid digestion followed by ICP–MS. Arsenic speciation was analyzed by water extraction followed by LC–ICP–MS. Total arsenic concentrations in the seaweeds ranged from 1.39 to 55.0 mg kg−1. Cystoseira species and Codium fragile showed the highest total As contents, while Ulva species (U. intestinalis, U. rigida,U. fasciata) had the lowest Arsenosugars, the most common arsenic species in seaweeds, were found in all samples, and glycerol-arsenosugar was the most common form; however, phosphate-arsenosugar and sulfate-arsenosugar were also present. Inorganic arsenic was measured in seven algae species and detected in another. Arsenate was the most abundant species in Cystoseira barbata (27.0 mg kg−1). Arsenobetaine was measured in only one sample. Methylated arsenic species were measured at very low concentrations. The information should contribute to further understanding the presence of arsenic compounds in dominant seaweeds from the Thermaikos Gulf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号