首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
废物处理   2篇
环保管理   3篇
综合类   6篇
基础理论   5篇
污染及防治   5篇
评价与监测   1篇
  2022年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1999年   2篇
  1981年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有22条查询结果,搜索用时 107 毫秒
1.
2.
Schueler V  Kuemmerle T  Schröder H 《Ambio》2011,40(5):528-539
Land use conflicts are becoming increasingly apparent from local to global scales. Surface gold mining is an extreme source of such a conflict, but mining impacts on local livelihoods often remain unclear. Our goal here was to assess land cover change due to gold surface mining in Western Ghana, one of the world’s leading gold mining regions, and to study how these changes affected land use systems. We used Landsat satellite images from 1986–2002 to map land cover change and field interviews with farmers to understand the livelihood implications of mining-related land cover change. Our results showed that surface mining resulted in deforestation (58%), a substantial loss of farmland (45%) within mining concessions, and widespread spill-over effects as relocated farmers expand farmland into forests. This points to rapidly eroding livelihood foundations, suggesting that the environmental and social costs of Ghana’s gold boom may be much higher than previously thought.  相似文献   
3.
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.  相似文献   
4.
The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na+ and Ca2+ on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH = 7. Isotherms for the beta-blocker metoprolol were obtained by sediment–water batch tests over a wide concentration range (1–100 000 μg L?1). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n = 0.9), indicating slightly non-linear behavior. Results show that the influence of Ca2+ compared to Na+ is more pronounced. A logarithmic correlation between the Freundlich coefficient KFr and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.  相似文献   
5.
Local residents who habitually consume cadmium-contaminated rice (Oryza sativa L.) can be exposed to cadmium toxicity in Mae Sot District, Tak Province, Thailand. This study aimed to investigate an alternative for utilizing cadmium-contaminated rice without compromising their health with hazard risks. First, cadmium (Cd) concentration in rice grain and crude rice oil was determined (0.203 ± 0.030 and 0.007 ± 0.002 mgCd/kg dry weight, respectively). Then crude rice oil extracted from cadmium-contaminated rice grain was studied for its anti-oxidative property using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging approach. Next, quantitative analysis of γ-oryzanol in crude rice oil was conducted. Results indicated that the level of cadmium concentration in the rice grain could cause adverse effects on human health. However, the amount of cadmium in the crude rice oil was safe for consumption. In crude rice oil anti-oxidative property, crude rice oil extracted from cadmium-contaminated rice was significantly higher than the control (P < 0.05). The concentration of γ-oryzanol in crude rice oil extracted from cadmium-contaminated rice was significantly higher than that in the control crude rice oil (P < 0.05). This study demonstrates an alternative way to use the rice grown in cadmium-contaminated areas for crude rice oil production for its anti-oxidative properties.  相似文献   
6.
The pH-dependent transport of eight selected ionizable pharmaceuticals was investigated by using saturated column experiments. Seventy-eight different breakthrough curves on a natural sandy aquifer material were produced and compared for three different pH levels at otherwise constant conditions. The experimentally obtained KOC data were compared with calculated KOC values derived from two different log KOW-log KOC correlation approaches. A significant pH-dependence on sorption was observed for all compounds with pKa in the considered pH range. Strong retardation was measured for several compounds despite their hydrophilic character. Besides an overall underestimation of KOC, the comparison between calculated and measured values only yields meaningful results for the acidic and neutral compounds. Basic compounds retarded much stronger than expected, particularly at low pH when their cationic species dominated. This is caused by additional ionic interactions, such as cation exchange processes, which are insufficiently considered in the applied KOC correlations.  相似文献   
7.
Three high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films from Chronopol (Ch-I) and Cargill Dow Polymers (GII and Ca-I) were analyzed for their degradation under various temperature and relative humidity (RH) conditions. Two sets of plastic films, each containing 11 samples, were randomly hung in a temperature/humidity-controlled chamber by means of plastic-coated paper clips. The tested conditions were 28, 40, and 55°C at 50 and 100% RH, respectively, and 55°C at 10% RH. The three tested PLA films started to lose their tensile properties when their weight-average molecular weight (M w) was in the range of 50,000 to 75,000 g mol–1. The average degradation rate of Ch-I, GII, and Ca-I was 28,931, 27,361, and 63,025 M w/week, respectively. Hence, GII had a faster degradation rate than Ch-I and Ca-I under all tested conditions. The degradation rate of PLA plastics was enhanced by the increase in temperature and relative humidity. This trend was observed in all three PLA plastics (Ca-I, GII, and Ch-I). Of the three tested films, Ch-I was the first to lose its mechanical properties, whereas Ca-I demonstrated the slowest loss, with mechanical properties under all tested conditions.  相似文献   
8.
Dechlorination of a nonachloro biphenyl congener with zero-valent iron in water under high temperature and pressure was investigated over time. Temperature has the main influence on the speed of dechlorination. Determination of polychlorinated biphenyls (PCBs) according to the grade of chlorination was performed by gas chromatography with mass selective detection in single ion monitoring mode. Dechlorination results in a variety of lower chlorinated biphenyls. The level of chlorination decreases with time. The amount of PCB molecules decreases to one-third within 90 min at 250 degrees C and 100 atm. However, no increase of biphenyl could be detected over time. A first-order kinetic model fitted the data obtained.  相似文献   
9.
10.
The unlimited economic growth that fuels capitalism's metabolism has profoundly transformed a large portion of Earth. The resulting environmental destruction has led to an unprecedented rate of biodiversity loss. Following large-scale losses of habitats and species, it was recognized that biodiversity is crucial to maintaining functional ecosystems. We sought to continue the debate on the contradictions between economic growth and biodiversity in the conservation science literature and thus invite scholars to engage in reversing the biodiversity crisis through acknowledging the impacts of economic growth. In the 1970s, a global agenda was set to develop different milestones related to sustainable development, including green–blue economic growth, which despite not specifically addressing biodiversity reinforced the idea that economic development based on profit is compatible with the planet's ecology. Only after biodiversity loss captured the attention of environmental sciences researchers in the early 2000s was a global biodiversity agenda implemented. The agenda highlights biodiversity conservation as a major international challenge and recognizes that the main drivers of biodiversity loss derive from economic activities. The post-2000 biodiversity agendas, including the 2030 Agenda for Sustainable Development and the post-2020 Convention on Biological Diversity Global Strategy Framework, do not consider the negative impacts of growth-oriented strategies on biodiversity. As a result, global biodiversity conservation priorities are governed by the economic value of biodiversity and its assumed contribution to people's welfare. A large body of empirical evidence shows that unlimited economic growth is the main driver of biodiversity loss in the Anthropocene; thus, we strongly argue for sustainable degrowth and a fundamental shift in societal values. An equitable downscaling of the physical economy can improve ecological conditions, thus reducing biodiversity loss and consequently enhancing human well-being.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号