首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   3篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We present a new methodology for database-driven ecosystem model generation and apply the methodology to the world's 66 currently defined Large Marine Ecosystems. The method relies on a large number of spatial and temporal databases, including FishBase, SeaLifeBase, as well as several other databases developed notably as part of the Sea Around Us project. The models are formulated using the freely available Ecopath with Ecosim (EwE) modeling approach and software. We tune the models by fitting to available time series data, but recognize that the models represent only a first-generation of database-driven ecosystem models. We use the models to obtain a first estimate of fish biomass in the world's LMEs. The biggest hurdles at present to further model development and validation are insufficient time series trend information, and data on spatial fishing effort.  相似文献   
2.
Environmental and Ecological Statistics - Habitat modifications driven by human impact and climate change may influence species distribution, particularly in aquatic environments. Niche-based...  相似文献   
3.
We present and evaluate AquaMaps, a presence-only species distribution modelling system that allows the incorporation of expert knowledge about habitat usage and was designed for maximum output of standardized species range maps at the global scale. In the marine environment there is a significant challenge to the production of range maps due to large biases in the amount and location of occurrence data for most species. AquaMaps is compared with traditional presence-only species distribution modelling methods to determine the quality of outputs under equivalently automated conditions. The effect of the inclusion of expert knowledge to AquaMaps is also investigated. Model outputs were tested internally, through data partitioning, and externally against independent survey data to determine the ability of models to predict presence versus absence. Models were also tested externally by assessing correlation with independent survey estimates of relative species abundance. AquaMaps outputs compare well to the existing methods tested, and inclusion of expert knowledge results in a general improvement in model outputs. The transparency, speed and adaptability of the AquaMaps system, as well as the existing online framework which allows expert review to compensate for sampling biases and thus improve model predictions are proposed as additional benefits for public and research use alike.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号