首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
环保管理   1篇
基础理论   12篇
灾害及防治   2篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2008年   2篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
排序方式: 共有15条查询结果,搜索用时 250 毫秒
1.
2.
The hydrogeomorphic (HGM) approach to wetland classification and functional assessment is becoming more widespread in the United States but its use has been limited by the length of time needed to develop appropriate data sets and functional assessment models. One particularly difficult aspect is the transferability among geographic regions of specific models used to assess wetland function. Sharing of models could considerably shorten development and implementation of HGM throughout the United States and elsewhere. As hydrology is the driving force behind wetland functions, we assessed the comparability of hydrologic characteristics of three HGM subclasses (slope, headwater floodplain, mainstem floodplain) using comparable long-term hydrologic data sets from different regions of the United States (Ridge and Valley Province in Pennsylvania and the Willamette Valley in Oregon). If hydrology by HGM subclass were similar between different geographic regions, it might be possible to more readily transfer extant models between those regions. We found that slope wetlands (typically groundwater-driven) had similar hydrologic characteristics, even though absolute details (such as depth of water) differed. We did not find the floodplain subclasses to be comparable, likely due to effects of urbanization in Oregon, regional differences in soils and, perhaps, climate. Slight differences in hydrology can shift wetland functions from those mediated by aerobic processes to those dominated by anaerobic processes. Functions such as nutrient cycling can be noticeably altered as a result. Our data suggest considerable caution in the application of models outside of the region for which they were developed.  相似文献   
3.
Abstract: A drastic decline in the number of black rhinoceroses ( Diceros bicornis ), primarily as a result of poaching places this species in imminent danger of extinction. The remaining black rhinos are divided into small, isolated populations that are vulnerable to demographic extinction, disease epidemics, genetic drift and inbreeding. Some conservationists have suggested minimizing these threats by moving as many animals as possible from different isolated populations to a few safe "rhino sanctuaries." To examine the possible long-term genetic consequences of such a strategy, we focused our efforts on determining the level of genetic differences among the remaining black rhino populations by examining restriction fragment length polymorphisms of the rapidly evolving mitochondrial DNA molecule. The 23 black rhinos in our survey, including animals from three geographic regions and two named subspecies, showed very little mitochondrial DNA differentiation. Only 4 out of 18 restriction enzymes revealed any mtDNA polymorphism, and the average estimated percent sequence divergence between the four mtDNA genotypes observed as 0.17%. Mitochondrial DNA divergence between the two named subspecies, D. b. minor and D. b. michaeli , was estimated to be only 0.29%. These results indicate a very close genetic relationship among the black rhinos in our survey. Thus, the mitochondrial DNA data suggest that within national boundaries, the black rhino populations we sampled may be considered single populations for breeding purposes, which might increase the species' probability of survival.  相似文献   
4.
The Paradox of Forest Fragmentation Genetics   总被引:5,自引:0,他引:5  
Abstract:  Theory predicts widespread loss of genetic diversity from drift and inbreeding in trees subjected to habitat fragmentation, yet empirical support of this theory is scarce. We argue that population genetics theory may be misapplied in light of ecological realities that, when recognized, require scrutiny of underlying evolutionary assumptions. One ecological reality is that fragment boundaries often do not represent boundaries for mating populations of trees that benefit from long-distance pollination, sometimes abetted by long-distance seed dispersal. Where fragments do not delineate populations, genetic theory of small populations does not apply. Even in spatially isolated populations, where genetic theory may eventually apply, evolutionary arguments assume that samples from fragmented populations represent trees that have had sufficient time to experience drift, inbreeding, and ultimately inbreeding depression, an unwarranted assumption where stands in fragments are living relicts of largely unrelated predisturbance populations. Genetic degradation may not be as important as ecological degradation for many decades following habitat fragmentation.  相似文献   
5.
6.
7.
8.
9.
10.
Abstract: Funding for conservation is limited, and its investment for maximum conservation gain can likely be enhanced through the application of relevant science. Many donor institutions support and use science to pursue conservation goals, but their activities remain relatively unfamiliar to the conservation‐science community. We examined the priorities and practices of U.S.‐based private foundations that support biodiversity conservation. We surveyed 50 donor members of the Consultative Group on Biological Diversity (CGBD) to address three questions: (1) What support do CGBD members provide for conservation science? (2) How do CGBD members use conservation science in their grant making and strategic thinking? (3) How do CGBD members obtain information about conservation science? The 38 donor institutions that responded to the survey made $340 million in grants for conservation in 2005, including $62 million for conservation science. Individual foundations varied substantially in the proportion of conservation funds allocated to science. Foundations also varied in the ways and degree to which they used conservation science to guide their grant making. Respondents found it “somewhat difficult” to stay informed about conservation science relevant to their work, reporting that they accessed conservation science information mainly through their grantees. Many funders reported concerns about the strategic utility of funding conservation science to achieve conservation gains. To increase investment by private foundations in conservation science, funders, researchers, and conservation practitioners need to jointly identify when and how new scientific knowledge will lower barriers to conservation gains. We envision an evolving relationship between funders and conservation scientists that emphasizes primary research and synthesis motivated by (1) applicability, (2) human‐ecosystem interactions, (3) active engagement among scientists and decision makers, and (4) broader communication of relevant scientific information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号