首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2021年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
2.
We devised a novel approach to model reintroduced populations whereby demographic data collected from multiple sites are integrated into a Bayesian hierarchical model. Integrating data from multiple reintroductions allows more precise population-growth projections to be made, especially for populations for which data are sparse, and allows projections that account for random site-to-site variation to be made before new reintroductions are attempted. We used data from reintroductions of the North Island Robin (Petroica longipes), an endemic New Zealand passerine, to 10 sites where non-native mammalian predators are controlled. A comparison of candidate models that we based on deviance information criterion showed that rat-tracking rate (an index of rat density) was a useful predictor of robin fecundity and adult female survival, that landscape connectivity and a binary measure of whether sites were on a peninsula were useful predictors of apparent juvenile survival (probably due to differential dispersal away from reintroduction sites), and that there was unexplained random variation among sites in all demographic rates. We used the two best supported models to estimate the finite rate of increase (λ) for populations at each of the 10 sites, and for a proposed reintroduction site, under different levels of rat control. Only three of the reintroduction sites had λ distributions completely >1 for either model. At two sites, λ was expected to be >1 if rat-tracking rates were <5%. At the other five reintroduction sites, λ was predicted to be close to 1, and it was unclear whether growth was expected. Predictions of λ for the proposed reintroduction site were less precise than for other sites because distributions incorporated the full range of site-to-site random variation in vital rates. Our methods can be applied to any species for which postrelease data on demographic rates are available and potentially can be extended to model multiple species simultaneously.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号